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Executive Summary

The Anatomy Benchmarks of the Visceral project have various tasks related to segmentation of
anatomical structures (lung, liver, kidney, ...) in non-annotated whole body MR- and CT- volumes
(participants can choose which of the organs to segment), and identification of anatomical landmarks
in this data. These tasks were evaluated during competition, in the context of various separate events.

After the initial experience during the Medical Computer Vision workshop, co-located with MICCAI
2013 in Nagoya, Japan. Visceral Anatomy 1 benchmark was successfully completed. This competition
was open for participation from August 2013 to December 2013, and focused on whole body labelling
in 3D medical imaging data.

Intermediate results obtained during Visceral Anatomy 2 benchmark, took part of an ISBI 2014
challenge in Beijing, China. This competition focused on segmentation of anatomical structures and
identification of landmarks.

Anatomy 2 benchmark was successfully completed and most participating groups contributed follow-
up articles to the MICCAI 2014 Workshop in Boston, USA.
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1 Introduction

The Anatomy Benchmarks of the Visceral project have various tasks related to segmentation of
anatomical structures (lung, liver, kidney, ...) in non-annotated whole body MR- and CT- volumes
(participants can choose which of the organs to segment), and identification of anatomical landmarks
in this data. These tasks were evaluated during competition, in the context of various separate events.

After the initial experience during the Medical Computer Vision workshop, co-located with MICCAI
2013 in Nagoya, Japan. Visceral Anatomy 1 benchmark was successfully completed. This competition
was open for participation from August 2013 to December 2013, and focused on whole body labelling
in 3D medical imaging data.

Intermediate results obtained during Visceral Anatomy 2 benchmark, took part of an ISBI 2014
challenge in Beijing, China. This competition focused on segmentation of anatomical structures and
identification of landmarks.

Anatomy 2 benchmark was successfully completed and most participating groups contributed follow-
up articles to the MICCAI 2014 Workshop in Cambridge, USA.

Figure 1: The VISCERAL session during MCV - MICCAI 2014

2 Proceedings from Anatomy 2 competition

In this section a summary of the proceedings of the Visceral Anatomy 2 competition, presented in the
Visceral Organ Segmentation and Landmark Detection Challenge in ISBI 2014. The results were
published in a CEUR-WS proceedings ' .

The follow-up contributions to the Medical Computer Vision Workshop at MICCAI 2014 can be
accessed online at : http://link.springer.com/book/10.1007/978-3-319-13972-2

! http://ceur-ws.org/Vol-1194/
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1 Introduction
Computational approaches that can be scaled to large amounts of medical data are needed to
tackle the ever growing data. resources obtained daily from the hospitals [Doi05]. Handling this
enormous amount of medical data during clinical routine by health professionals has complexity
ing limitations. 1t is also very time-consuming, and hence requires unsupervised and
automatic methods to perform the necessary data analysis and processing for data interpretation.
There are already many algorithms and techniques for big data analysis, however, most rescarch

sroups do not have access to large-scale annotated medical data to develop such approaches for
medical images. Distributing these big data sets (on the order of terabytes) requires efficient and
scalable storing and computing capabilities. Exaluation campaigns and benchmarks can objectively
compare multiple state-of-the art algorithms to determine the optimal solution for a certain clinical
task [HMLM 1, GSHKCDF* 13].

The Visual Concept Extraction Challenge in Radiology (VISCERAL) project was developed as
& cloud-based infrastructure for the evaluation of medical image analysis techniques on large data
sets [LMMH13]. The shared cloud environment in which the VISCERAL project takes place allows
aceess and processing of these data without having to duplicate the data or move it to participants’

side. Since the data are stored centrally, and not distributed outside the cloud environment
the legal and ethical requirements of such data sets can also be satisfied, so also confidential
data sets c .ww benchmarked in this way as only a small training data set can be a

RAL project
tionally powerful virtual machines that can be accessed

atrcture s provided and Fued by the VISC

participants [EILI* 10]. The cloud i
The participants are provided with compu
remotely in the shared cloud infrastructure while working on the training data and tuning their
algorithms. Participant acces is withdrawn during the evaluation phase and only the organizers
aiccess the machines. The algorithms are brought o the data to perform automated processing and
data. mining. The evaluation of the performance of these methods can therefore be done with real
clinical imaging data and the ontcomes can be reused to improve the methods.

The whole body 3D medical imaging data including manual labels that s provided by VIS-
CERAL includes a small subset with ground truth annotated by experienced radiologists. Through
evaluation campaigns, challenges, benchmarks and competitions, tasks of general interest can be
selected to compare the algorithms on a large scale. This manually annotated gold corpus can be
used to identify high quality methods that can also be combined to create a much larger “reason-
satisfactory butperhaps not as reliable as manual annotation. Using

the segmentations

ably annotated” data. sc
fusion techniques this silver corpus will be created with the agecement betwr
of the algorithms on a large-scale data set. ‘This maximizes the gain of mamal annotation and also
identifies strong differences between participating systems on the annotated organs.

2 ISBI Challenge Framework

AL series benchmark

The registration procedure for the ISBI challenge was that of the VISCE
that includes several campaigns. The participants filled information details and uploaded a signed
participation agreement form, which corresponds to cthics requests for usage of the data. Since
the VISCERAL data set is stored on the Azure Cloud, each participant,then received access to an
Azure virtual cloud-computing instance. There were 5 operating systems available to choose from
including Windows 2012, Windows 2008, Ubuntu Server 14.04 LTS, openSUSE 13.1 and CentOS
6.5, All cloud- computing instances have an 8-core CPU with 16 GB RAM to provide the same
computing capabilities to different solutions proposed. The participant gets administrator rights
on their virtual machine (VM) and can access remotely to deploy their algorithms and add any
supporting library /applications to their VM. The VISCERAL training data set can then be accessed
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Segmentations

Figure 1: The ISBI training sct

and downloaded securely within the VMs through secured URL links,

2.1 Data Set
The medical images contained in the VISCERAL data set have been acquired during daily clinical
routine work. Data sets of children (<18 years) were not included based on the recommendations
of the ethical committee. In the provided data sets multiple organs are visible and depicted in
resolution sufficient to reliably detect an organ and delincate its borders. This s to enforce that
a large mumber of organs and structures can be segmented in one data set. The onsists
of computd tomography (CT) seans and magnetic rsonce, (MI) imaging with and without
contrast enhancement to evaluate the participants algorithms on several modalities, contrasts and
MR sequence directions, making sure that algorithms are not optimized for one specific machine
or protocol

The available training sct from VISCERAL Anatomy? benchmark was used by the participants
of the ISBI VISCERAL challenge. The contents of this datasct arc elaborated below

211 CT Scans
There are 15 unenhanced whole-body CT volumes acquired from patients with bone marrow neo-
plasms, such as multiple myeloma, to detect osteolysis. The field-of view spans from and includ-
ing the head to the knee (see Fig. 2, A). The in-planc resolution ranges between 0.977/0.977 to
1.405/1.405 mm, and the in-between plane resolution is 3 mm or higher

15 contrast-enhanced CT seans of the trunk that have been acquired in patients with malignant
Iymphoma are also included. They have a large field-of view from the corpus mandibulae to the
Tower part of the pelvis (see Fi They have an in-plane resolution of between 0.604/0.601
and 0.793/0.793 mm, and an in-between plane resolution of at least 3 mm or higher

212 MR Seans
15 whole- body MR scans in two sequences (30 in total) are also part of the training set. They were
acquired in patients with multiple myeloma to detect focal and or diffuse bone marrow infltration
Both a coronal T1-weighted and fat-suppressed T2-weighted or STIR (short tan inversion recovery)
sequence of the whole body are available for each of the 15 patients. The field of-view starts and
includes the head and ends at the feet (see Fig. 2, C). The in plane resolution is 1.250/1.250 mm,
and the in between plane resolution s 5 min

Prface
VISCERAL (Visual Coneept. Extraction Challenge in Radiology) aims to organize serics of
benchmarks on the processing of large-scale 3D radiology images, by using an inmovative
cloud-based evaluation approach

While a growing mumber of benchmark studies compare the performance of algorithms for
automated organ segmentation in images with restricted field of views, emphasis on anatom-
ical segmentation and landmark localization in images with wide ficld g show
ing entire abdomen, trunk, or the whole body) has been limited. AL Anatomy?
benmark seics, nasly Organ Sementation nd Landmart: Ditoction Beottmaris, aim
to address this need. This ISBI VISCERAL Ch e, a part of Anatomy? series, has
been organized on May 1 2014, within the IEEE Temationd Symposium on Biomedical
Tmaging (ISBI) in Beijing, China

‘The challenge participants have submitted segmentation and localization results two weeks
before the challenge session, that were evaluated against test data by the organizers with
results presented during the challenge session. mn participant presented his method in a
5 minute oral session during the challenge session. icipants also submitted short papers
summarizing their specific methodologics that were S generate their results

This volume contains two parts. The first part consist of one paper authored by the
organizers of the challenge, and the second part presents a compilation of the submissions
by the challenge participants. We thank the authors for their submissions and the program
committee for their hard work.

Oreun Goksel
On behalf of VISCERAL Consortium
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Abstract

The VISual Concept Extraction challenge in RAdioLogy
(VISCERAL) project has been developed loud-based
infrastructure for the evaluation of medical image data in
large data scts. As part of this project, the ISBI 2014 (Inte
national Symposium for Biomedical Imaging) challenge was
organized using the VISCERAL data set and shared cloud
framework. Two tasks were selected to exploit and con
pare multiple state-of-the-art solutions designed for big data
medical image analysis. Segmentation and landmark localiza-
tion results from the submitted algorithms were compared to
manually annotated ground truth in the VISCERAL data st
“This paper presents an overview of the challenge setup and
data set used as well as the evaluation metrics from the vari-
ous results submitted to the challenge. The participants pre-
sented their algorithms during an organized session at ISBI
2014, There were lively discussions in which the importance
of comparing approaches on tasks sharing a common data set
was highlighted

Copuright © by the paper's authors. Copying permitted only for private and academic purposes.
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Figure 2: Sample data set volumes. A) Whole-body unenhanced CT: B) contrast-enhanced CT of
the trunk; C) wholebody unenhanced MR; D) contrast-enhanced MR of the abdomen

To improve the segmentation of smaller organs (such as the adrenal glands), 15 T1 contrast
enhanced fat saturated MR scans of the abdomen are also inluded. They were acquired in onco-
logical patients with likely metastases within the abdomen. The field-of view starts at the top of
the diaphragm and extends to the lower part of the pelvis (sce Fig. 2, D). They have an in plane
resolution of between 0.840/0.804 to 1.302/1.302 mim, and an in-between plane resolution of 3 mm.

2.1.3  Annotated Structures and Landmarks
“There are in total 60 manually annotated volumes in this ISBI challenge training set. The available
data contains segmentation and landmarks of several different anatomical structures in different
ing modalitics, ¢.g. CT and MRI

The two categories of annotations and results ar:

» Region segmentations: These regions correspond to anatomical structures (e.g. right lung), or
subyparts in volume data. The 20 anatomical structures that make up the training set arc
trachea, left/right lungs, sternum, vertebra L1, left/right Kidneys, left/right adrenal glands,
left/right psons major muscles, left/right rectus abdominis, thyroid gland, liver, splecn, gall-
bladder, pancreas, urinary bladder and aorta. Not all structures are visible or within the
field-of-view in the images, therefore leading to varying numbers of annotations per structure
(sce Fig, 1 for a detailed break-down).

 Landmarks: Anatomical landmarks are the locations of selected anatomical structures that
should be identifiable in the different image sequences available in the data set. There can
be up to 53 anatomical landmarks (sec Fig. 1) located in the data set volumes: left/right
clavicles, left/right crista iliaca, symphysis, left/right trochanter major, left/right trochanter
minor, aortic arch, trachea bifurcation, aorta bifurcation, vertebrae C2-C7, Thi-Th12, LI-L5,
xyphoidens, aortic valve, left/right sternoclavicular, VCI bifurcation, left/right tuberculums,

9



Jiménez del Toro et al: ISBI V

SC:

RAL Challenge Organization

left/right renal pelvises, left/right bronchus, left/right eyes, left/right ventricles, left/right
ischiadicum and coronaria.

In total the 60 training set volumes containing 890 manually segmented anatomical structures and
2420 manually located anatomical landmarks make up the training set. Some of the anatomical
structures in the volumes were not segmented if the annotators considered there was insufficient
tissuc contrast to perform the segmentation o to locate the landmark. Other structures are miss-
ing or not included in the training set because of anatomical variations (e.g. wissing Kidney) or
radiologic pathological signs (e, aortic aneurysim). Landmarks are easy and quick to annotate
whereas precise organ segmentation is time consuming even when using automatic tools.

2.4 Test Set

The test set. con

s 20 manually annotated volumes. Bach
and abdomen contrast-enhanced

dality (wholebody CT, thorax
T whle hody MI and abdomen contraet enhanced M) &
represented by 5 volumes. The anatom jands

volumes were used to evaluate the participants” algorithms

al structures and landmarks contained in the sclected

2.2 ISBI VISCERAL Challenge Submission

The participants can select the strctunes and modalities in which they choose to participate.
The outputs are therefore evaluated per structure and per modality. The evaluation of the ISBI
challenge has been organized differently than the general VISCERAL evaluation framework to allow
for the evaluation results to complete in the given relatively short time-frame. For this challenge,
the test set volumes were made available in the cloud some weeks ahead of the challenge. The
participants themsclves computed the annotations (scgmentations and/or landmark locations) in
their VMs and stored them on their VM storage. The files could then be submitted within their
VM through an uploading script provided to the participants. The seript stored the
in & corresponding cloud container ercated for the challenge individual for cach participan
containing the available ground truth segmentations of the test set filtered duplicates or output
files with incorrect file names. It also ensured all files were coherent with the participant ID list
from the organizers.

2.3 Evaluation Software

To evaluate the output segmentations and landmark locations against the ground truth, the VIS-
CERAL evaluation tool was used. This software was also included in the VM assigned to each
participant. This evaluation tool has different evaluation metrics implemented such as (1) distance
(2) spatial overlap metrics and (3) probabilistic and information theoretic metrics,
The most suitable subset, of the metrics was used in the analysis of t and all metrics
were made available to the participants. For the output segmentations of the ISBI challenge the
following evaluation metrics were selected:

© DICE coefficient [ZWB*04]

© Adjusted Rand Index [VPYM11]
« Tnterclass Correlation [GIC01]

o Average distance [KCABO9]

10
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Table 2: Anato
enhanced and un

results table. Contrast—

ical structure segmentation task: Average Dista
o CT sc o

-
i g

Tuble 3: Evaluation metries for the MR scan submissions.

Both gold corpu
test set volum

silver corpus will be available as a resource to the community. The ISBI
5 L Anatomy?

and annotations are now available and are part of the V
ark training sct

r, both past VISCERAL anato
landmark localization tasks. There are two

bench

So benchmarks have addressed organ segmentation and
e benchmarks under development in the VISCERAL
project, a retrieval benchmark and a detection benchmark. The retrieval benchmark will be the
retrieval of similax cases based on both visual information and radiology reports. The detection
benchmark will focus in the detection of lesions in MR and CT images
In the future, the automation of the evaluation process is intended to reduce the need for interven-
tion from the organizers to a minimum and to provide faster evaluation fecdback to the participants
The participants will then be able to submit their algorithus through the cloud virtual machines
and obtain the calculated metrics directly from the system. Such a system could then store the
results from all the algorithms submitted and perform an objective comparison with state-of-the
art algorithms. Through the involvement of the rescarch community, the VISCERAL framework
could produce novel tools for the clinical work flow that has substantial impact on diagnosis quality
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Rule-Based Ventral Cavity Multi-Organ Automatic
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Abstract

We describe a new method for the automatic segmentation
of multiple organs of the ventral cavity in CT scans. The
method is based on a set of rules that determine the order i

which the organs are isolated an
plest one to t

ed. from the sim-

ot it one, Pt the body s solated

e semented based o thei i content. Third,
the spleen and the kidneys the‘mpuhwnh high blood con-
tent - are segmented. Finally, the kidney is scgmented based
on the sronmuding organs scsmentation. Ench organ s i
vidually segmented with a four-step procedure that consists
of: 1) definition of an inclusive region of interest; 2) identi-

fication of the largest axial cross-section slice: 3) removal of
background structures by morphological operations, and; 4)
3D region growing segmentation. Our method is un
that it uses the same generic segmentation approach for all
o and in that it relies on the sgmentation iy of
15 to guide the segmentation process. Experimental ro-
Sitson 15 CT scans of the VISCERAL Anatony2 Challense
training datasets yield a Dice volume overlap similarity score
of 79.1 for the trachea, 97.4 and 97.6 for the left and right
Tungs, 9.2 for the spleen, and 92.8 for the left Kidney. For
the 5 CT scans test datasets, the Dice scores are 97.9, 97.0,
85.6, 934 and 90.2, respectively. Our method achieved an
overall DICE score of 92.8 and was ranked first among the
five methods that participated in the challenge.

Copight © b the pape's ators. Coping wwvm!ml only for private and academic purposes.
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Figure 3: Anatomical structure sogmentation task: DICE coefficiont results. Contrast-enhanced
CT scans of the Thorax and Abdomen.

Only one label is considered per image. The voxel value can be cither zero (background) or one for
the voxels containing the segmentation. A threshold is set at 0.5 o create binary images in case
the output label has a fuzzy membership or a probability map.

For the landmark localization evaluation the same VISCERAL tool measures the landmark
specific average error (Euclidean distance) error between all the results and the manually located
landmarks. The percentage of detected landmarks per volume (i.e. landmarks detected / landmarks
in the volume) is also computed.

2.4 Participation
The ISBI training and test set volumes were made available through the Azure cloud framework
for all the registered participants of the VISCERAL Anatomy? benchmark. In total 18 groups
got access to the challenge training set and the 60 training volumes of the data set. The research
groups that submitted working virtual machines had a to present their methods and results
2 tho “VISCERAL Organ Sogmentation and Ladmark Detcction Challonge at the 2011 1EEE
nterational Symposin on Diomedical Inaging (1B1)

A singleblind review process was applied to the initial abstract submissions. The accepted

uh«u,\:u were then invited to submit a short, paper presenting their methods and results in the
challenge. There were 5 high-quality submissions accepted and included in these proceedings.

Spanier ot ol [S714] submitted segmentations for e ogane in CT contrast_enbanced volnes
Their multi-step algorithm combines thresholding and region growing techniques to segment cach
organ individually. T starts with the location of a region of interest and identification of the largest,
axial exoss-scetion slices of the selected structure. 1t the improves the initial segmentation with
morphological operators and a final step performs 3D region growing,

Huang et al. [HLJ14] proposed a coarse-to-fine liver segmentation using prior models for the
shape, profile appearance and contextual information of the Tiver. An AdaBoost voxel based clas-
sifier creates a liver probability map that is refined in the last step with frce-form deformation with,

1
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and treatment success. Having all tools and algorithms in the same cloud environment can also
help us to combine tools and approaches with very little additional effort, which expectedly yields
better results.

5 Acknowledgments
“The researel leadin to these results has seceived funding from the Enropean Union Seventh Frame-

work Programme (FP7/2007-2013) under grant agreement n° 318068 VISCERAL. We would also
like to thank Microsoft research for their financial and information support in using the Az

clond
for the benchmark.

References

[Doios] K Doi. Current status and future potential of computer-aided diagnosis in
medical imaging. British Journal of Radiology, T8:3-19, 2005

[BILI* 10] Bernice Elger, Jimison lavindrasana, Luigi Lo Tacono, Henning Miiler, Nicolas
Roduit, Paul Summers, and Jessica Wright. Strategies for health data exchange
for secondary, crow. iitutions clinica rescarch. Computer Methods and Pro-
grams in Biomedicine, 99(3):230-251, September 2010.

[Gas1d] Orcun Goksel, Tobias Gass, and Gabor Szekely. Segmentation and landmark
Tocalization based on multiple atlases. In Orcun Goksel, editor, Proceedings of
the VISCERAL Challenge at ISBI, CEUR Workshop Proceedings, pages 3743,
Beijing, China, May 2014,

[Gacon] Suido Gerig, Matthien Jomier, and Miranda Chakos. A new validation tool for

assessing and improving 3D object segmentation. In Wiro J. Niessen and Max A.
Viergove, ditors, Medical Iage Computing and Computer-Assisted Interven-
tion - MICCAI 2001, volume 2208 of Lecture Notes in Computer Science, pages
516-523. Springer Berlin Heidelberg, 2001

[GSAHKCDF*13] Alba Garcia Seco de Herrera, Jayashree Kalpathy-Cramer, Dina Demner Fush-
man, Sameer Antani, and Henning Miiller, Overview of the ImageCLEF 2013
medical tasks. Tn Working Notes of CLEF 2013 (Cross Language Evaluation
Forum), September 2013

1

Spaier and Joskowicz: Rule-Based Ventral Cavity ion in CT

1 Introduction

The increasing amount of medical imaging data acquired in clinical practice constitutes a vast
database of untapped dingnosticall relevant information. Today, only
information is used during cl
d data size [1
¢ retrieval (CBIR) techniques have heen proposed to access this information
and to identify similar cases to assist radiologists in the clinical decision support process [2). The
segmentation of individual ventral cavity organs in CT sans is expected to improve the diagnostic
of CBIR systoms. While the manual delincation of these organs is
. this is a tedious and very time-consuming process which is impractical
for all but a few dozen datasets for research. Consequently, a plethora of methods for antomatic
seamentation of ventral body cavity organs in CT scans have heen proposed. Liver scgmentation
methods are thoroughly summarized and reviewed by Mharib et al. [1]. Lungs segmentation from
CT scans has been addressed by Sluimer et al. [5]. Kidney segmentation methods are described
in Freiman et al [6]. While very different from each other, all these methods target a single organ
and do not use information about other organs’ segmentations. Thus, multi-organ scgmentation
requires a specific method for each organ, which yields variable quality results and quickly becomes
unmanagable as the number of organs to be segmented grows. 1t is thus desirable to develop a
ingle, generic approach that can be customized for each organ and that uses the information about
other organs’ segmentations.

The rul »—h.c«vd approach to medical image smentaton calls for using each organ anatom
context a or knowledge about its loc nd its extension for enhancing, improving, and
autor .\Hup. e segmentation proces. In hix pipeline.o . the organs of interest
are successively extracted from the CT Previous res ed mainly on liver seg-
ation [3]. In this paper, we extend and generalize the rule-based approach to the automatic
segmentation of multiple ventral cavity organs in CT sc

nall fraction of this
ichnese. high dimen.

al routine or research due to the complexity,

ed approac
xch has fo

2 Method

The basic premise of the rule-based paradigm is o wqumv(n\”v extract different organs based on
prior information on the organs of interest and their charact scan. Simple and
context-fre organs are segmented first, folloved h,» more complex and context-based identfication
and delineation. Our proposed approach extends the established rule-based approach by providing
a unified, generic four-step approach that is customized for each organ and incorporates information
about other organs prior segmentations,

eristics in the

2.1 Generic organ segmentation framework

In our gencric framework, the segmentation of cach organ is performed in four successive steps
(Fig. 1)

1. Definition of the organ's Binary Inclusive Region OF Interest (BI-ROI) based on the target
organ intensity values.

2. Identification of the organ’s Largest Axial Cross Section Slice (LACSS,
where the organ has the largest axial area.

This is the CT scan

3. Removal of remaining background structures from the LACSS by morphological operation:

4. Organ segmentation by 3D region growing starting from the LACSS inside the BI-ROL
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Table 1: Anatomical structure segme

ation task: DICE coefficient results table.  Contrast—
anced CT scans submissions.

nhanced and

o gradient appearance model

Wang ct al. [WS14] scgmented 10 anatomical structures in CT contrast-cnhanced and unen-
hanced scans. Their multi-organ scgmentation pipeline performs in a top-down approach by a
model-based level set. segmentation of the ventral cavity. After dividing the cavity in thoracic and
abdominopelvic cavity, the major structures are segmented and their location information s passed
to the lower-lovel structure

Jiménez del Toro et al. [JATM14] sogmented structures in CT and contrast-cnhanced CT scans
with a hierarchical milti-atlas approach. Based on the spatial anatomical correlations between the
organs, the bigger and high-contrasted organs are first segmented. These then define the initial
volume transformations for the smaller structures with loss defined boundaries

Gokscl et al. [GGS14] submitted scgmentations for both CT and MR anatomical structure scg-
mentation. They also submitted results for the landmark localization task. For the segmentations
they use a multi-atlas based technique that implements Markov Random Fields to guide the reg-
istrations. A multi-atlas template-based approach fuses the different estimations to detect the
landmarks.

3 Results

There were approximately 500 structure segmentations and 211 landmark locations submitted to
the VISCERAL ISBI challenge. Four participants submitted results for the segmentation tasks in
multiple organs using whole body CT or contrast enhanced scans with results presented in Table 1
and Fig. 3. There was one participant that contributed segmentations on both the whole body MR,
scans and the contrast-enhanced MR abdomen volumes with results presented in Table 3. Only one
participant submitted landmark localization results, with Table 4 showing their evaluation results.

4 Conclusions and Future Work

The VISCERAL project has the evaluation of algorithms on large data sets as its main objective.
The proposed VISCERAL infrastructure allows evaluations with private or restricted data, such as
electronic health records, without the participants access to the test data by using a fully cloud
based approach. This infrastructure also avoid moving data, which is potentially hard for very
large data sets. The algorithms are brought to the data and not the data to the algorithms,
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Step: step: 2

Remove non-target Region growing
objects fromLacss [l toadjacent slices

)

-
‘The LACSS

Figure 1: The four steps of the generic organ segmentation framework exemplified on the spleen.

We start with a preprocessing step that isolates the patient body from the Iwk,,muml (air
and scan gantry) based on location and intensity values. The generic four-step
e to he ventral by cavty ongus i he followinorder. Fis, the bneathing satems organs
are segmented: the trachea and the left and right lings. Next, the organs with Iugll blood content
are segmented: the spleen, the liver, and the left and right kidney: organ
order prevents ambiguous assignment of the same image region to multiple organs, as previous|

work is then

egmentation
sly

segmented image regions are excluded from the segmentation process. Die to space imitations, we
illustrate below each step for the breathing system only.

22 Breathing system segmentation

The breathing system consists of the trachen and the left and right lung,

Step 1: Definition of the BI-ROL: Binary Inclusive Region of Interest

We perform a simple thresholding n.nm Houndsficl Unit (HU) of air and fat (< -500HU). This
results in a binary map consisting of air, fat, and other backgronnd structures. Then, the trachea
and the hings are separated from Hw from the undeive surounding £ by i the the lngent
connected component. The resulting structure includes the breathing system defines the trachea
and lungs BI-ROI (Fig. 2a). This BI-ROL is further refined for the trachea and the loft and right
Tngs

Step 2: Identification of the LACSS: Largest Axial Cross Section Slice

The Largest Axial Cross Section Slice (LACSS) of the trachea and the lungs are identified by finding
the CT slices in the BI-ROI with the narrowest and widest perimeters, respectively (Figs. 2b and
2c). Note that the lungs slice contains two connected components, for the left and right lungs.

Step 3: Removal of background structures
No further background removal is required for the trachea and lungs, since the lungs LACSS contains

exactly two connected components corresponding to the left and right lungs and the trachea LACSS
contains exactly one connected component (Fig. 2).

18



Spanier and Joskowicz: Rule-Based Ventral Cavity S

egmentation in CT

(a) ] L]
Figure 2: Tlustration of the results of the first two steps of the generic organ segmentation frame-
work on the breathing system: a) Binary Inclusive Region of Interest; b) Largest Axi
Section Slice plane for the trachea, and <) Largest Al Cross Section Sice plane for the hungs,

Step 4: Segmentation by 3D region growing
The trachea and the left and right lungs are segmented by 3D region growing, The process starts
at the LACSS and proceeds to adjacent CT slices withing the volume defined by the BI-ROL
First, the distance map between the LACSS contour (Fig 3a) and the adjacent slice (Fig 3b) is
computed, with the LACSS contour distance set to 0 (Fig 3c). Next, the adjacent slice and the
distance map are intersected to identify regions of high change (Fig 3d). In the resulting intersection
we define a series of windows along the contour (Fig 3¢) and compute the intensity histogram in each
window. Finally, windows whose histograms have a positive kurtosis are considered as segim
i

. eg. windows Ry and Ry in Fig e. These windows contain undesired structures whose

voxels are removed from the organ segmentation. Windows whose histograms have 7ero or negative
kurtosis, e, window Rg in Fig e, arc considered smooth and are thus segmented as part of the
organ of interest. This process is repeated thronghont the slices of the image ntil the mumber of

segmented pixels in the slice is below a predefined threshold.

The idea behind this step is that ventral cavity organs are relatively smooth, o two adjacent
slices of the same organ cannot exceed some level of variability. From a geometric point of view
we constrain the expansion of the region growing boundary curve to have variable speed according
to the context. Our method takes into account the local geometry of the curvature: when the
nitude of the curvature is above a predefined threshold, we stop its propagation and allow it to
continne only in low curvature regions. The rationale is once again that ventral body cavity organs
should preserve some level of smoothness constraint. The final result is the 3D segmentation of the
organ (Fig 4)

3 Experimental Results

We evaluated our method on two sets of scans of the VISCERAL Anatomy2 Challenge. The training
and tost datasets consist of 15 and 5 CT clinical scans, respectively, acquired in 2004-08. Datasets
of patients younger than 18 years were not included following the recommendation of the local
cthical committee ($-165/2012, approval date Feb. 21th 2013). The CT scans in-planc resolution is
0.601-0.798/0.604-0.703mm: the in-between plane resolution is >=3mm. A VISCERAL team
radiologist manually produced ground-truth segmentations for each scan.

Table 1 summarizes the results for cach type of dataset and organ: training and test datasets,
left lung, right, lung, trachea, spleen and left kiduey. Note that the DICE similarity coefficients
are high or very high, with a relatively small standard deviation. Our method achieved an overall
DICI of 92
Fig. 4 shows four representative examples of the multi-organ segmentation results,

8 and was ranked first among the five methods that participated in the challenge
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Abstract

In this paper, an automatic and robust coarse-to-fine liver im-

age segmentation method is proposed. Multiple prior knowl-
edge models are built to implement liver localization and seg-
mentation: voxel-based AdaBoost classifier s trained to lo-

calize liver position robustly, shape and aj o models,

are constructed to fit liver shape and appearance models to
original CT images. Free-form deformation is incorporated
into segmentation process to improve the model's ability of
2014

VISCERAL challenge datasets and the result demonstrates

refining liver boundary. The method was tested on 1B

that the proposed method is robust and efficient

1 Introduction

Acenrate and robust liver segmentation in CT images is an indispensable part in liver quantitative
diagnosis and surgery planning, while variation in liver shape, appearance and fuzzy boundary
remain challenging. Recently, prior knowledge models learned from big data play an important
role in successful clinical image segmentation. In this study, integrating of diseriminative and
generative models in a hybrid scheme was presented to assist liver localization and segmentation
machine learning based voxel classifir, active shape model (ASM) [Cootes05] including statistical
shape model

1) prior and local appearance model. Finally, the final fitted model was free-

form deformed to true liver boundary under appearance model guidance. The conrse-to-fine liver
image segmentation framework ineluding liver localization, model reconstruction, model fitting and

free-form deformation is illustrated in Figure 1
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Abstract

An automatic multi-organ segmentation pipeline is presented
The segmentation starts with stripping the body of skin and
subutancous fat using threshold-based level-set. methods.
After registering the image to be processed
dard subject picked from the training datasets, a series of

inst a stan-

model-based level set segmentation operations is carried out
guided by hierarchical shape priors. The hierarchical shape
priors are organized according to the anatomical hierarchy
of the human body, starting with ventral cavity, and then

divided into thoracic cavity and abdominopelvic cavity. The
third lovel conta

i the individual organs such as liver, spleen
and kidneys. The segmentation is performed in a top-down
fashion, where major structures are segmented first, and their
location information is then passed down to the lower lovel to
e the segmentation, while bonnd
higher-level structures also constrains the segmentation of the
lower-level structures. In our preliminary experiments, the
proposed method yielded a Dice coefficient around 90% for
most major thoracic and abdominal o

it

¥ information from

gans in both contrast-

enhanced CT and non-enhanced datasets, while the average
running time for segmenting ten organs was about 10 min-
utes.

1 Introduction

Automatic segmentation of anatomical structures

has great value for both clinical and epidemiolog-
ical studies. Some common examples include using a brain segmentation tool for quantitative «
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Figure 3: Illustration of step 4, 3D region growing, on the right lung: a) initial LACSS; b) adjacent

LACSS: ¢) distance map; d) intersection image of the adjacent LACSS and distance map, and c)
windows along the contour.
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Table 1: Results: Mean Dice similarity coeffficient and standard deviation for the training and test
datasets on each organ.

Figure 4: Multi-organ segmentation results of four representative datasets of the VISCERAL
Anatomy?2 Chall

4 Conclusions

We have developed a generic framework for the segmentation of ventral body cavity organs in CT
scans. Our approach consists of four-step pipeline method that takes into acconnt prior information
about the locations of the organs and their appearance in CT scans. We have shown that the method
is applicable to a variety of ventral body cavity organs including the trachea, the left and right
lungs, the spleen, and the left kidney

Current and future researeh is incorporating other structures, including the right kidney and the
liver. We are also extending the 3D region
different regions of the organ, to eliminate and avoid leakage to neighboring organs,

growing step to include different smoothing criteria in
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(@ (b) © @)

Figure 1: The four steps of liver segmentation framework: (a) liver model location; (b) registration

with liver distance map; (c) shape fitting under appearance guidance; (d) free-form deformation.

2 Method
2.1

An atlas image based rigid registration with correlation coefficient histogram metric was used to
detect the region of interest (ROI) of liver. A set of i
variance, location, histogram and cont

features such as region mean inter

ual features were extracted to train an AdaBoost classifier,

by which a liver probability map was generated, and the position of the liver was robustly estimated.

2.2 Model reconstruction

The SSM of liver was constructed from training CT images and corresponding binary segmenta-
tions. Firstly, pose training described in [Huang13) was applied to resample all the images. For
shape correspondence establishment, one reference mesh was obt

d by marching cubes method,
all othe
pled equally on cach training mesh. The SSM was constructed by Statismo toolkit [Luthi12] and
represented by simplex mesh.

‘The local appearance model of liver was established by a K Nearest Neighbor (K

training segmentations were elastic registered to the reference mesh, landmarks were sam-

N)-classifier
trained on both intensity and gradient profiles information inside, outside and at the true liver
boundary as suggested in [Heimann07]. For each landmark, profiles perpendicular to the surface
are sampled from all training volumes and stored as boundary samples. Additional non-boundary
samples were acquired by shifting the profiles towards the inside and outside of the liver

2.3 Shape and appearance profile fitting
For the image to be segmented, a liver probability map was derived by AdaBoost classifier, and
the binary mask can be obtained at threshold 0.5. The distance map image was applied to register
10 the point sets of the mean shape model, and the mesh vertexes of deformed mean shape were
fitted to liver boundary location with major shape variation constraints.

The appearance model is utilized to drive the model toward the precise liver boundary. Local
appearance features for all landmarks are extracted at different positions perpendicular to the model

surface. Previous trained KNN-classifier shifts landmarks to the optimal displacement position with

‘maximum boundary probability.

2.4 Free-form deformation

Once appe

ance profile fitting has converged, the deformed shape model were then free-form
deformed to the more accurate position. Free deformation was implemented based on deformable

simplex mesh [Montagnat97] segmentation. The internal force strives to keep the deformable mesh
close 1o the best fitting

where intensity or gradient appearance model predicts the highest boundary probability. Previous

and the external forces trics to move all vertices to the locations

2
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surements of brain structure changes to study Alzheimer's discase [FSB*02], using an automated
lung segmentation method to define the region of interest for compute
‘methods for more efficient screening and carlier detection of tumors, and using liver scgmentation
for surgery planning to achieve more precise and better cancer treatment [HVGS*09]. Besides
these single organ applications, the multi-organ segmentation methods have broader applications,
such as radiotherapy planning and semantic image segmentation and content retrieving [SKM* 10]
Many automated organ segmentation methods lmw been proposed in the literature, such as the

aided diagnosis (CAD)

active shape model (ASM) [CTCGO5), atlas-bas is [ISR*09] and machine-learning-based
methods [ZBGY08]. The robustuess of these \mg]v—nu.dn approaches is usually unsatisfactory
This is related to the fact that the boundary between two organs may be inadequately defined

due to limited resolution as

intensity similarity. Even with the help of shape priors, most algo-
rithms still have difficulties in discriminating between another organ and anatomical variation of
the same organ. Recently, a number of multi-organ scgmentation approaches have been proposed.
thanks to the improving performance of modern computers and the increasing recognition of the
advantages of considering multi-organ simultancous in the image models. Okada et al. proposed
a hicrarchical organization of organ ASMs [OYH*08], where the inter-organ position changing is
decoupled from the individual orga
their upper
a hierarchical atlas registration and weighting scheme, which sequentially picks the close-looking

‘morphological

riations. Promising results were obtained in

abdominal organ segmentation in contrast-cohanced CT scans. Wolz et al. proposed

atlases, best-matching organ atlases and best-fitting segmentation patches in a three-level coarse-
istration pipeline [WC A fow machine learning based methods were also reported
[MSW*11, KSZ*11]. In [WS14], we proposed an automatic multi-organ segmentation method us-
ing hierarchical-shape-prior guided level sets. The bierarchical shape priors are organized according

to-fine re ‘12

10 the anatomical hierarchy of the human body, so that the major structures with less population
variation are at the top, and smaller structures with higher irregularities are linked at a lower level,
The segmentation is performed in a top-down fashion, where major structures are segmented first,
and their location information is then passed down to the lower level to initialize the scgmentation

while boundary information from higher-level structures also constrains the segmentation of the
lower-level structures. The proposed method delivered relatively accurate results in non-enhanced
CT datasets [WS14]. In this paper, we extend the framework to process both non-enhanced and
contras

nhance CT datasets, by introducing an iterative organ intensity cstimation step.

2 Methods

Figure 1 summarizes the processing pipeline of the proposed segmentation framework, which can
be roughly divided into three phases: preprocessing, hierarchical shape model guided multi-organ

segmentation and iterative organ intensity estimation. Deta
given in the following sections.

led descriptions of these phases are

21 Proprocessing
A skin and subeutancous fat stripping step is first carried out to remove the large variation of the
subentaneous fat distribution among the population. This is done with a two-s

op threshold-based
lovel set. segmentation combined with mathematical morphology operations. First, the surface of
the buman body is segmented with a threshold of 300 HU and an initial seed region st to cover the
whole volume. The resulting mask is then processed with an erosion operator o remove the skin.
Finally a second round threshold-based level set segmentation is earried out with the threshold
set o 0 HU. After subeutancous fat stripping, the musculoskeletal figure of a patient tends to
vary less from patient to patient. A straightforward rigid registration is carried out between the

2
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KNN
shape.

classifier was integrated us external force to deform to conquer local specific variation of liver

3 Res

alt

Seven CT and seven CTee IBST VISCERAL challenge 2014 datasets were employed to train Ad-
aBoost classifier. Additional fifty manually segmented datascts were used to train the prior shape
and appearance models. There are 1252 landmarks in the liver shape model, each landmark is
sampled with 11 points in the landmark normal dircction in the profile model. The experiment was

tested on 8 CT and 8 CTee datascts. The four evaluation metric scores a

 as follows: average dice

coefficient were 0.924 and 0.925, interclass corrclation were 0.924 and 0.925, adjusted rand index

were 0.

1d 0.920 and average distance were 0.222mm and 0.261mm for CT and CTee modality
respectively.

4 Conclusion

In this paper, a robust and automatic liver segmentation method is proposed. The method exploits
different prior knowledge to represent contextual, profile appearance and shape variation of liver
elics on different registration to construct liver model, liver localization, model fitting and refined
deformation. The method has been validated on ISBI VISCERAL challenge and showed good
performance. In future, we will adapt the method to other visceral organs segmentation.
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iy
Mult-organ segmentation using
hierarchical-shape-prior guided leve sets

Figure 1: The processing pipeline of the proposed multi-organ segmentation framework

unseen patient and a selected standard subject. This standard subject (common-looking subject)
was manually selected by visually comparing the appearance among the sample group. The air-
filled lung areas in both datasets are set to the fat tissue intensity to reduce their influence on the
registration, so the skeletons are better aligned. The transformation matrix from the registration
step s used to initialize the position of the hicrarchical shape model. For non
a cropping step is introduce to limit the remaining processing to the torso.
section area is estimated by finding the largest connected region (2D) within the museuloskeletal
figure among all axial slices. The starting and ending slice of the torso is then defined as the
first slice, on cither side of the largest torso cross-scetion slice, in which the width of the largest

ihanced CT datase

he largest torso cross-

connected region (2D) is below half the width of the largest torso cross-section area

2.2 Hierarchical shape model guided multi-organ segmentation
The hierarchical shape model used in this study is shown in Figure 2. To generate statistical shape
priors for individual structures, all segmentation masks of the corresponding organ are registered
to the common-looking subject. To link a statistical shape prior to its parent structures space, the
statistical mean shape s registered against a trust zone created by thresholding the probability

atlas of that anatomical strieture in the upper-level structures space. More detailed description of
building the hicrarchical shape priors can be found in [WS14].
The segmentation is performed in a top-down fashion, i.c. ventral cavity is first segmented, and

then divided into thora

cavity and abdominopelvie cavity. The third level contains the individual
organs such liver, spleen and kidneys. The location information of a higher level structure is
passed down to the lower level to initialize the segmentation. Within the same level, structures are
segmented sequentially from left to right as the order listed in Figure 2.

Segm

ated regions are set

to different empirically defined likelihood values to guide the following scgmentation.

23 Iterative organ intensity estimation
In the proposed hierarchical-shape-prior guided level set framework, the external speed function is
an intensity mapping function, which is similar to the threshold function in the threshold-based
level set. method proposed by Lefohn et al. [LCW03]. In [WS14], the upper and lower thresholds
are empirically defined beforehand for different structures. Since the intensity of some organs in

contrast-cnhanced CT scans ean vary depending on the cireulation rate and acquisition timing,
we introduced an iterative approach to estimate the intensity range of heart, liver, kidney and
spleen. An organs upper and lower threshold are estimated o be M + 150 and M ~ 150, where
M and o is the mean and standard deviation of the voxel intensity within the current segmented
arca. All voxels with intensity lower than 30HU are excluded from the caleulation of M and o
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Figure 2: The hierarchical shape model used in this study

The intens
intensity estimation stops when the changing rates of M and o are both lower than a threshold (5
HU). The fixed thresholds reported in [WS14] are used as the initial setting for these organs in the
beginning of organ segmentation.

y estimation is repeated every 15 iterations of the model fitting process. The iterative

2.4 Model-guided level set using coherent propagation
In this study, the model-based level set method proposed by Leventon ct al. [LGF02)(Leventon,
Grimson, and Faugeras 2002) is adapted for individual structure segmentation at different Tevels.
Making this method fficient and accurate s essential for the usability and robustiess of the whole
framework. In onr carlier papers [WFS11, WFS14]), we proposed a fast level set method using
colierent propagation, which achicved 10100 times speed-up in various scgmentation tasks when
compared with the sparse field level set algorithn. Tn [WS14], we extended the coherent propagation
wethod to model-bused level sets, which can not only speed up the level set propagation, but also
reduce the frequency of shape-prior rogistration by taking advantage of the convergence detection
of the colierent propagation. In this new framework, the model fitting operation is only repeated
if the contour has moved a certain distance from the previously estimated model.

3 Results

The proposed method was trained on 7 training CT datasets and tested on 5 non-enhanced CT
datasets and 5 contrast-enhanced CT datasets. These CT images are down-sampled to 333 mm
resalution, whereas the segmentation results are up-sampled to the original resolution for evalua-
tion. Al these datasets were obtained from the Visceral Benchmark 1 site (viscoral.cu) [HML* 12,
Oxerall, the proposed method yielded a Dice coefficient around 90% for most major organs. De-
tailed results are listed in Table 1. The average processing time for segmenting al ten major organs
is about. 10 minutes (excluding the resampling steps) on an 8-core Mac Pro (2.26GHz). Figure 3
shows an example of the segmentation results at different stages from one testing datasc.
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anatomical structure

eparately. These masks are obtained from the morphological dilation of the
output labels of the different atlases registered in the previous step. The registrations of the bigx

aaller structures, which are harder

structures are used as a starting point for the closely related

to segment. Most of the registrations of the initial bigger structures (liver, qup‘ urinary bladder

will be reused in the method which makes it faster than scgmenting e dividually

from the start. The method is repeated for the non-rigid registrations of all he ¢ target structures,

Also the creation of regions-of-interest with the local masks speeds up the image registrations and

improves the output estimations.

Local
Affine

e
Local
Affine

B-spline
non-rigid

Figure 1: Method Pipeline.

2.3 Non-rigid registration

After each anatomical structure has its own independent ROT mask, the volumes are registered
again but using a non-rigid B-spline transformation model. This non-rigid registration allows local
deformations obtaining a higher spatial similarity between the volumes. The B-spline registration
was also performed in a multi-tesolution approach with an adaptive stochastic gradient descent
optimizer. This final registration step has a higher computational cost than the affine registration.
The transformed labels are updated using the coordinate transformation parameters from the B-

spline registration. The new transformed label volumes for each structure constitute the individual
votes that will be used for the label fusion step.
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Tyble 1: SEGMENTATION RESULTS

Organ Nowenhanced CT__| C

Name Dice Average
coefficient t | Hausdorff

% distance | (%) | distance

Tiver 0901 0.6 0557 065

Spleen 0.887 0.5 0.812 0.87

Left lung | 0,971 007 0.956 0.15

Right lung | 0.972 0.06 0.942 0.20

Left kidney | 0.729 363 0.896 0.27

Right kidney | 0.7 121 0,890 0.28

Bladder 0.806 078 0.738 159

Figure 3: Segmentation results at different stages. A, segmentation result after skin and subeu-
tancous fat stripping; B, segmentation result of the ventral cavity; C, segmentation result of the
second lovel structures; D, segmentation results of the third level structures

4 Discussion and Conclusion

The proposed segmentation method has a number of limitations. First, the statistical shape priors
for different structures were trained on 7 subjects, which can over-constrain the segmented arca. (cf.
liver segmentation in Figure 3D). Second, as the top-down strategy suffers from the accumulated

error being passed down along the hicrarchy tree, a bottom-up feedback path should be added

z

1o allow the lower structure to recover the higher level errors. Future work

achudes improv-

ing segmentation accuracy by using more cdge-based image terms and extending the framework

work using hicrarchical

shape priors is presented. This method gradually improves the estimation of the organ location by

frst segme ped structures. The appearance of organs is iteratively
.

to handle MRI images. In conclusion, a multi-organ segmentation fr

ing out large and regular-

estimated based on statistical analysis of preliminary scgmentation results. Preliminary results on
non-cnhanced and contrast-cnhance CT datasets are encouraging,
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Abstract

il

require an i
natomi m.m»mm As
part of the VISCERAL benchmarks on Anat
it i <t »ﬂgn\vnmlmu
atomical correlations is proposed. The
‘method begins with a global alignment of the volumes and re-
fines the alignenment of the structures locally. The aligument
of the bigger structures is used as reference for the smaller
and harder to segment structures. The method is evaluated
in the ISBI VISCERAL testset on ten anatomical structures
in both contrast-enhanced and non-enhanced computed to-
‘mography scans. The proposed method obtained the highest
DICE overlap score i the entire competition for some stric-
tures such as kidneys and gallbladder. Similar segmentation
accuracies compared 1o the highest results of the other meth-

ods proposed in the challenge are obtained for most of the
od.

other structures segmented with the 1

1 Introduction

eal structure segmentation in medical i

aging is & fundamental step for further image
i the ongoing increase in medical image data,
it is necessary to d(*\mh\p m ,u.d automatic algorithms that can process a large quantity of images
with high accuracy and t speed for clinical daily use. Although many different methods have
already been proposed [stm CRK*13], it is uncommon to test multiple approaches ame
available dataset. The Visual Concept Extraction Challenge in Radiology (VISCERAL') bench-
marks have been organized with the objective to evaluate the available state-of-the-art sogmenting

Anaton
analysis and computer-aided diagnosis [Doi05].
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2.4 Label fusion

A different label volume is obtained for every atlas registered to the target volun order to
combine the information obtained from the multiple s regitered, the output labels e fused
in a single label for the target volume. Defining a majority voting threshold is a commonly used
Iabel fusion method. An optimal t)m"«huld is found for cach of the tructures on a per
voel basis with this approach. Majori i has ko the dvantage of providing moro than one
output segmentation ssying the theeshold p..m..mx with no additional computations required.

3 Experimental Setup
Ten CT volumes were used to evaluate the performance of the algorithm for the Tnternational
Symposim on Biomedical Imaging (ISB) 2014 VISCERAL challenge. Five of them are contrast-
enhanced (ccCT) with a field-of-view from below the skull base to the pelvis. The other five are
non-enhanced whole hody CT sans (wbCT). For the ten CT volumes, ten structures were included
in the proposed segmentation method: liver, 2 kidneys, 2 lungs, urinary bladder, splecn, trachea,
first lumbar vertebra and gallbladder

Auinitial global affine registration is followed by individual affine registrations of the indepen-
dent structures using local masks as described in the method. The Tiver, both lungs, 15t hunbar
vertebra and urinary bladder were segmented with individual affine and non rigid registrati
The gallbladder and right kiduey have the affine aligument of the volume after the liver registra-
tions as a starting point, The left luug affine alignment is used for the spleen and the left kiduey.
The right lung affine alignment is refined for the trachea sogmentation. Al structures are refined
with nonrigid b-spline registration for the final estimation.

According to the results of the VISCERAL Benchmark 1, an individual majority vote threshold
was selected in each structure for the label fusion.

4 Results

The method obtained a total average DICE of 0.789 for ten structures in ceCT
the same ten structures in whCT (Table 1). Al the overlap scores were higher in cc
close relation to the wum llom the other participants in the challenge for the sam
structures. “The method obtained the best DICE score of the ISBI Visceral challenge for the left
Kidne le albladder i ceCT. For whCT the meshod ad he et DIC
50 bt verteb, galbladder and trachen

d 0694 for

Table 1: Average Segmentation Accuracy

Structure Reference structure | DICE CTwb | DICE ceCT.
Tiver o 0523 0,905
Right lung o1 0.967 0.963
Left lung o1 0.969 0.952
Urinary bladder none oot 0.68
Ist Lumbar vertebra | none 0.472
Right kidney liver ] 0.905
Gallbladder liver 0.271 0.4
trachea right lnng 0.855 0.83
Spleen left Tung 0.677 0,850
Left kidney left lung 0.678 0.923
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approaches on a large public dataset. Twenty anatomical structu

in four imaging modalities,
enhanced and non-cnhanced magnetic resonance (MR) and m.npuu»u tomography mlu.m. are
included in both the training and testing sets provided to the participants. The benchmarks

(ribute Lo quantitios of volumes and
e conditions (regarding computing power

handled in a novel cloud environment that allows to d
lement algorithims of the rescarc
ete.) inside the cloud [LMMH13).

Multi-atlas based segmentation is an oo oach that requires little or no interaction from the user.
It has been evaluated showing high - and consistent reproducibility in different anatomical
structures [LSL* 10, RBMMJOM|. T his method, an i inchudes . patint solume and  fabel
volume, created by manual anotation, that identifies uw location of one o moro strutures in
the paticnt vohume, The target is the query volume where the Tocation of the structures is un-
known. Using image esistration, the sptial rlationship betwen the targe and atlas volume is
estimated. The label volumes are transformed taking the coordinate transformation obtained from
the registration. Afterwards the labels are fused resulting in o single label volume that provides
an estimated location of the label in the target volume. When multiple atlases are used, the local
errors of the registration will be removed by a per-voxel classification.

The proposed method was tested on computed tomography seans with ten different anatomical
structures, The method ean be extended and atppht‘d to the other modalities and any of the
anatomical structures in the VISCERAL dataset.

2 Method

All volumes are resampled to obtain isotropic 1mm voxels. Afterwards they are down sampled to
half their size in all three dimensions to speed up the registrations and resampled to their original
size for the label fusion.

21 Tmage registration

The atlas patient volume, considered as moving volume Vi (r), is registered to the fixed query
volume V() using the image registration implementation of Elastix w[rwe«n‘l [KSM*10]. The
rameterized

esitaton s evaluated in every iterative optimization by a cost function C of the pas
ordinate transformation T,, from the moving atlas volume Vy to the query vt Vo. The

aptive stochastic gradien descent optimizer proposed i [KPSV09) is applied. A coordinate

transformation is obtained by minimizing the value of C with respect to the transformation:

i = argmin O(T,aVi

i 9 min O »
"

the subscript 1 indicates that the transformation was parameterized with a vector j that contains

the transformation parameters. Normalized Cross Correlation (NCC) is selected as the similarity

metric for cost function C.

22 Hierarchical anatomical structure alignment
The anatomy can differ considerably from patient to patient, particularly the spatial relations be
tween the different structures in the same patient volume (JATM13]. Since multiple structures
are segmentation targets in the VISCERAL benchmark, a hierarchical selection of the registra-
of all the structures. A global affine rey
using local binary masks to enforce the spatial correlation of

tions improves the segmentatior
inds

tion is followed by

idual affine registratio

FElasti: Wi felastix s, 2004 [Onlines aceesed 27-April-2014),
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5 Conclusions

The proposed method showed robustess in the segmentation of multiple structures from two
different modalities of the chal
consistent for most of the evaluated anatomical structures and obtained some of the best structure

using o relatively small dataset. The overlap accuraci

overlap of the challenge when compared to the other proposed methods in the same testset.

Due to the fiexibility of the method for adding more structures, for future work the method will
e extended to snchiude all of the anatomial structures i the VISCERAL dntaset. An cvaluation
of the method for the other modalitics (MR and contrast-enhanced MR) is also forescen for the
VISCERAL benchmark 2 Anatomy with a much bigger
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Based on Multiple Atlases
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Abstract

In this work, we pre

nt multi-atlas based techniques for both,
segmentation and landmark detection. We focus on modality
and anatomy independent techniques to be applied to a wide
e of input images, in contrast to methods customized
a spe

fic anatomy or image modality. For segmentation, we
use label propagation from several atlases to a target image
via a Markov random field (MRF) based regi
followed by label fusion by majority voting weighted by lo-
cal cross-correlations. For landmark localization, we use a
consensus based fusion of location estimates from several at-
lases identificd by a template-matching approach. Res
R 1S5 2014 VISCERAL challense s el s VISCERAL
Anatomy! challenge are presented hercin

tration method,

1 Introduction

Segmentation and landmark detection are two very common problems in medical image analysi
as they both pertain to several clinical applications. Although there exist methods customized
for specific anatomy and modality, generic methods are valuable as they are applicable in a wide
range of applications without much effort for customization. Regarding the two tasks above, in th
work we use modality and anatomy independent techniques to treat the diverse dataset from the
Anatomy challenge series of the VISCERAL (Visual Concept Extraction Challenge in Radiology)
Consortium. The methods are detailed below, also presenting our results from the said challenges

2 Segmentation

For segmentation, a multi-atlas based technique is used by registering several atlases individually
e using our implementation of the MRF-based deformable registration method
Chese regis truth

o a target
in [GKT*08].
annotations) fror

fons are then v

ed to propagate the anatomical labels (groun

cach atlas image into the target coordinate frame. At voxel level, a majority

opuright © by the papers authors. Copying permitted only for private and academic purposes
O Golael (s ): Proceedings of the VISCERAL Organ Seganeotation and Landmask Detection Benchimark at
Ui 204 EEE et Sympoiun o Bl (S5, e, i, May 17, 2014
i i bitps/ feeur-ws.org.
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Table 1: Specifics of template and scarch ROL, where | -| represents image dimensions (per axis)

ROI box (cropped image) | Centered at | Targeted half-width (dinw) | Max size ()

Template image A} o, 20 mm 41 voxels

Search region X' o, 2417 voxels

s
A

When setting the template size, the trade-off beteen it containing sufficient image features and
final localization p was considered. Template half-width was set to 20 mm empirically via
cross-validation in multiple modalitics wsing different template sizes (e.g., 10, 20, 30, ..). The
search region s centered around a gross estimate of the landmark location, which is the normalized
voxel coordinates of the landmark from the atlas; using the fact that both the atlas and the target
have similar fields of view (ie. both abdomen, thorax, or whole body). Note that our large search
region covers most or all of the image in many modalities (e, in MRce) or at least a quadrant
thereof (c.g. in CT), such that the searched landmark can be guaranteed to exist therein

3.2 Similarity metric

For template matching, the template is convolved over the search region by computing two in-
dependent similarity metrics, sum of squared differences (SSD) and normalized cross-correlation
(NCC), at cach template location i with respect to search image. Both values are then nor lised
nm.nv o [u 1] such that they are both 1 at the best match location. bined similarity metri
SSD* then computed, where the parameters =2 and b=3 were determined empirically via
nm»vnhddlmu with several powers. The maximun of this combined metric gives the best match
location estimate pf, for landmark ¢ considered atlas Ay,

3.3 Statistical fusion of estimate location from atlases

From cross-validation trials with different techniques such as the mean and weighted average of
location estimates, the median operator was determined to be the best method for fusing location
estimates. Accordingly, each axis coordinate of the th

median value of those axes from

et landmark location is found as the
tlas estimates. The

atire process can be summarized as:
o Repeat for each atlas A,
~ Crop landmark template A% centered at given landmark location pfy  in atlas image A,
~ Crop a large search region X" centered around a grossly approximated location in X
~ Compute SSD(47, X') and COR(4, X')
~» pf, = argmax (SSD{? - COR[iJ*)
o o = median {7, | Va}

4 Results and Discussion

ed for the image modalitics: whole-body
s (CT), thorax: jgent CT images (CTee), abdominal Tlweighted
contrastagent Mt MRee), and whole-body Tl-weighted MR images (MR).

We treated each modality separately, We used the training images from Anatomy1 benchmark as
atlases, ie. depending on the modality of the test image, six atlases for CTee and seven for CT, MR,
MRee, For conveniance, wa combined all organ scgmentations for each atlas Ino a singlo L labe

T hm\\glmm the results, the following abbreviation:
or

abdomen contrast-
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voting is held to decide the winning label where each label votes based on the locally-normalized
cross-corselation (LNCC) [CBD*03] of the registered atlas to the given target at that location.

2.1 Atlas-based segmentation using registration via MRF

ling an optimal displacement vector field 7" can be defined as the minimization of a functional:
T:n\mm’mE(T.X.A,,) (1)
where X is a target image and A,‘ is an atlas image and £ i the registration energy. MRFS provide

an cfficient me: the minimizati with the main advantage being that it docs
ot el on the gadicnt of the riterion i therelor i es prone (o poor loeal optima. Tn order

to use MRFs for solving the minimization problem, this energy s decomposed into unary (1) and
pairwise (1) potentials over discrete labels as follows:
E(T,X.A, Z(t,, )+ Z My (b Lg) ) @)
b=

whe

© € is the discretized image space. The contimuous displaces

ent space is sampled discretely,
so that each registration label £, and 1, in the set of all registration labels L maps o a unique
displacement veetor d,. The unary potentials are then a local similarity metric, measuring the fit
betsveen the dduumvd atlas fmage and the target image at a location i, The pairwise potentials
correspond to prior which is often implemented as a smoothing
over the xwxghlvorhoud A as justified by a first-order Markov assumption. A is the pairwise weight.
ficient method was proposed in [GKT*08] that secks
lacements d of control points in & multi-resolution cubie B-spline framework. We use our

For robust and smooth solution of (2), an
the d

implementation of this method with four levels of detail, where the coarsest rid resolution has
three nodes along the shortest edge of an input image and a spacing as isotropic s possible giver
that a control-point is required on cach corner of the image. Each following level of the resolution
hicrarchy has twice the resolution compared to the previous step. At cach level of detail, we sample

four displacements in each cardinal direction, yielding 25 displacement samples in total. Within
each direction, samples are equidistant, with the largest displacement set to 0.4 times the control
grid spacing. This was shown to guarantee diffcomorphic deformations [RAH*06]. For each level
of detal, wo rerun the MRF registration with the displacements being roscaled by the golde
ratio 0.618. The resulting displacements are then composed onto the previous deformation. This
rantcs that the reslt s il difcomorphic and a-pisel aceutacy e be achiovod. For the
unary potentials we use normalized eross correlation (NCC) of patches centered around each control
point with their radins cquivalent to control grid spacing. Euclidean distance between displacements
of neighboring control grids is used to penalize non-smooth deformations. Tree-reweighted message
passing (TRW-S) [Kol06] is employed to find a solution to each energy minimization instance.

cgmentation candidate of the target image X based on the atlas A, is then obtained by
applying the resulting displacement field 7 to the known segmentation Sy, as follows:

Sxin = Sa,(T). 3)
2.2 Label fusion via weighted majority voting

Although MRF-based registration is a relatively robust method, it can only guarantee a locally op-
timal solution and is therefore susceptible to poor initialization. Furthermore, for a grossly different
atlas, correspondences for registration may not be guaranteed. Accordingly, the segmentation from
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segmentation image, which was then deformed using the atlas-to-target registration 7' described in
Sec. 2.1, In Tab. 2, Dice overlap metric results regarding our segmentation approach reported by
VISCERAL for the test images can be seen both for the VISCERAL Anatomyl benchmark and
the ISBI challenge.

Tn order to compare onr technique to other participants’
average rank per organ per participant. For given test image, we assigned a rank to each method,
e, {1,2,..,P) where P is the munber of participants submitted a (non-blank) output for that test
image. In Fig. 1 the average of such ranks for all given test images is scen per anatomy. Our
submission was the only entrant that aimed to seqment all images in all modalities and it achieved
competitive results for many organs as secn in the given figure. W did not plot ranks for the MR
modalitics, since wo were the only participant to submit such results.

notable that the multi-atlas fusion has

he ISBI challenge, we computed ai

tly lower segmentation accuracy for organs
which has low volume, e.g, urinary, gall bladder, and the adrenal glands. One possible explanation

s that such small structures are difficult to register using full-body images. Due to such misalign-
ments, overlap betwween multiple deformed atlas scgmentations for such label ¢
i the veighted mijoriy voting ot scleting thnt abel

1 be small, resulting

Table 2: Our segmentation overlap (Dice) results in VISCERAL Anatomy1 and ISBI challenges.

Anatomyl ISBI challenge
Modality cc MR CT MRee MRce
Kidvey (L) 0.903 0.730 0.805  0.782 0.888
Kidney (R) 0877 0733 0754 0.787 0.732
Spleen 0.802 0.668 0688 0,68 0.785
Liver 0,899 0.82 oam 0847 0.861
Lung (L) 0.961 0,53 0,650

Lung (R) 0.965 0,900 0.664

Urinary bladder 0,676 0,656 0.280 0.334
Lumbar Vertebra 1 0.604 0,396 0.060 0623 0.084
Thyroid 0.252 0,367 0315 0.488

Pancreas 0.465 0.356 | 0.442 0.356
Psons major (L) 0811 0.801 072 oadd | o 0 0.654
Psons major (R) 0.787

allblader 03310023 0102 0,035 | 0.212 u(m 0.000
Sternum 0.505 0358 0.648 0612

Aorta QT O7id o7 oss|0787 0781 a7ad
Trachen 0817 0736 0822 0839 0747 0837
Adrenal gland (L) 0.204 0,109 0,165 0.000 | 0.099 0.144 0.282
Adrenal gland (R)  0.164_ 0215 0,138 0.107 | 0019 0.268 0.133

5 Conclusions

In the Anatomy1 and ISBI challenges organized by VISCERAL project, our landmark localization
achieved in whole-body CT images an impressive 11 and 13 voxel average error, respectively
these challenges. No comparison to alternatives was possible since ours was the only entrant i
landmark localization in both challenges. For segmentation, our multi-atlas based method that
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a single atlas may not be satisfactory. It was shown in different rescarch fields that combination
of multiple weak information sources can surj
different atlases were combined in [HHA06]

Assume that N seg

pass average accuracy. Multiple segmentations from

ion candidates of a target image X are computed from N atlases via
(3). Let final target segmentation Sy be an image of the sam
from the set } such that each discrete value corresponds to an organ or anator
ractte. An ntiive and iragght-forward method o combine miltiple sesentation ctimates
tion label (majority voting, MV) at cach location p:

as X, where pixcls take on values

is then to choose the most frequent segment

V(p) = arg ’.‘.&xigaux Sxalp). (1)

Such oty vting does not take into account the individual qmlm of each registration and
ore the resulting segmentation. We assume that post-registration image similarity between
and can be used
to locally assign weights w to each individual segmentation. The resulting weighted majority vote
(wMV) can then be formalized as follows:

the doformed s ane the tarset e . indicato of egmentation e

S () = arg i ;::»mm.5.\.,,(»»)

To obtain the weights w, we use local normalized cross correlation (LNCC,[CBD*03)) between
image X and deformed atlas A, (7). The advantages of LNCC are its smoothness and fast com-
putation time due to convolution with Gaussian kernels:

LNCC(X.Y.p) = 7«<\):p:2‘(,4;» (X.Y)(0) = XY () - X0) - V(o)
X =Gt X ) = X2p) - T ), (©)

where + is the convolution operator and Gy,
the LNCC metric, we compute the weights:

(LN AT

a Ganssian kernel with standard deviation og. From

wn(p) (Y]

which normalizes LNCC to the range [0, 1). 5 is used to scale the similarity such that contributions

from individual segmentations are well spread (IK09]

3 Landmark Detection

For anatom

al landmark detection, we use a template based approach from multiple atlases, the
location estimates from which are fused based on their consensus, We localize each landmark ¢
separately from the others using the two stages below. To local

unknown voxel coor
7' of landmark £ in the target image X, we perform the following template matching procedure
from cach atlas A, where n represents the atlas index

tes

81 Determining template and search regions

The template is set as a box-shaped image region A in the current atlas. Similarly, a box-shaped
search region X" is defined in the target image. Both such regions are chosen targeting a physically
isotropic region of interest (ROI) in corresponding image, while limiting the maximum number of
ROI voxels to ensure efficient computation. Specifics of RO selection are given in Table 1
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