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Executive Summary

The Anatomy Benchmarks of the Visceral project have various tasks related to segmentation of
anatomical structures (lung, liver, kidney, ...) in non-annotated whole body MR- and CT- volumes
(participants can choose which of the organs to segment), and lesion detection in this data. These tasks
were evaluated during the competition event VISCERAL Anatomy and Lesion Detection Grand
Challenge held as an ISBI 2015 challenge in Brooklyn, USA during April 16th 2015.

The proceedings are to be published online as CEUR-WS.ORG proceedings.
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Introduction

The Anatomy Benchmarks of the Visceral project have various tasks related to segmentation of
anatomical structures (lung, liver, kidney, ...) in non-annotated whole body MR- and CT- volumes
(participants can choose which of the organs to segment), and lesion detection in this data. These tasks
were evaluated during the competition event VISCERAL Anatomy and Lesion Detection Grand
Challenge held as an ISBI 2015 challenge in Brooklyn, USA during April 16th 2015.
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Kahl et al: Good Features for Relinhle Registration

e 1 Two €T slices of a tamget (lefi) and atlas (right) with eorresponding features after RANSAC for
I\Ll\l\l Vertebra |

In principle, there
beused registration, see the surveys kn{‘*u snm| Intensit,
producing accurate registrations but are sensitive to initialization and often slow,
methods are wnally faster, but may risk failing due to many outhier correspondences between
the images. Our approach is an adapted fenture-based methor that wtilizes the speed of general
trying to climinate the risk of establishing ineorrect point-to-point
nages by identifying relisble feature polnts. We show that reliable
ed usingg (3) robust opti techniques and () leared feature

feature-based methods whil
correspondences between t

nlocalization can be e
cornespondences.

2 Proposed Sol

Our system segments ench organ independently of each other wsing a multi-atlas approach. The
pipeline hay three steps:

ion

1. Feature-based registration with RANSAC,
2. Label fusion with & random forest classifier.

3. Graph cut segmentation with a Potts model

Thesee steps will now be described in mory
1. Feature-based registration with RANSAC. In order to register an atlas i
targe

age o the
u fenture-based approsch & used. Sparse features nro extracted according to Svarm et
hich wses o method similar to SIFT for feature detection and SURF for feature
description. Typically around 8 000-10,000 features are extracted from a 512 % 512 800 CT image,
which takes less than 30s. Correspond s are obtained by i o subsel of the features in the
atlas image 1o the features in the target. The matching is done with a symmetric neighbor approach,
where el descriptor is matehied 1o its pearest neighbor. The organ-speeific subset of atlas features
is detormined as a pre-processing step in the following way. For each atlas image and organ, golden
trunsformations e stablshie o he ctber atus images g the groued ruth segmentaions.
Then, based on hich fe res i the atl
o features accordingly. We hve found cmpi
top 300 best Features for each organ provides robust and reliable registration. S

i, o i check whis

ally that wsing the
andard RANSAC
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Good Features for Reliable Registration
in Multi-Atlas Segmentation
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Abstract

This work presents & method for multi-orzan segmentation
in whole-body CT images based on & multi-atlas approach.
A robust and efficient. feature-based registration technique
s developed which uses sparse argan specific features that
bused on their ability to register diff

RANSAC to estimate nn affine transformation, followed by
# thin plate spline refnement, This yields an acenrate and
onigil transformation for each organ, which is in-
ul hence does ot sulfer from
a problem. Further, this is sccomplished at a
s by intensit 1 methods, The

ti-atlas framework
using label transfer and fusion, followed by a random forest
elussifier which produces the 1 for the final graph ¢
segmentation. For a majority of the classes our approach out-
performs the competitors at the VISCERAL Anate
Challenge on segmentation at ISBI 2015

1 Introduction

Segmentation is a key problem in medical image analysis, and may be used for numerous appli-
cations in medical research and elinical care. In this paper, a pipeline for the segmentation of
whole-body CT images into 20 different organs is presented. The approach is based on multi-atlas
segmentation, see [KSK*10, HKA*10, WSD*13] and the references therein, an approach which
s kmown. to produce state-of-the-art results for several segmentation tasks. The method requires
pait-wise registrations from a set of atlas images to the unknown targel, image.

Copyright © by the paper’s uthors. Copyis
In Procecdings of the VISCER
4 Symposium o Diowsedical 1

tedd oy for prieate and academic purposes
nd Chilleay
aging (ISBI), New York, NY, Apr 16%, 2015
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Figure 2 Example registration of Lunbar Vi
warped target mask. Rights The masks overl

bra 1. Left: the atlas ground trath mask, Middle: the TPS

in the same conndinate system

with the truncated £ as cost funetion is used in order o remove outliers. The optimé
500,000 iterations and the truncation threshold was set to 30 mm. See Figure 1 for an examphe,

Finally. a coordinate transformation from the atlas to the target image is computed by apply
thin plate splines (TPS) to the remaining correspondences, and thereafter vsed in arder to transfer
the labels of the atlas to the target image. The thin plate spline method propesed in [CR) was
wsed. One registration takes less than 105 in total. See Figure 2 for an example.

. the registrations are refined with n standurd ntensity-bused method

* e A tramsfered b, one
the map P(i) gives a number b

rpreted as the probability of voxel # belonging o the organ
atlas images say that voxel 7 should be organ, then Pii)

o

For example, if balf of t
The map P largely gy al appraranee aronnd the target organ and in order to mprove

the socuracy of the estin e map P abong with a few other features is used to train o random

We use Sherwond [CSKL1] to train and evalunte large random forest instances

et volume T and the map P, we begin by smoothing both using

keenel with standard deviation o
validation we also
cach vasel in 1 equals the (sig 0 the boundary surface of the 1
ihat s, the map P thresbolded at ‘ench volume I we thus obtain 5 features per voxel @ (i),
L(i), P{i), Pu(i) anid Pi). The output of the classifier produces yet another map, denoted P,
which is a refined estimate of the location of the organ. As previonsly, £, can be interpreted as the
probability for each voxel helonging to the organ of interest. See Figure 3 for an example.

1 two new volumes denoted T, and Py, Using cross

8. Graph cut segmentation with a Potts model. The random forest classil
wew estimate P () for each vosel i, but each decision in the classfier is taken independent
output of the neighbaring vexe i ey of producing noisy bonndary est
and therefore we will regularize the solution by using a standard Potts model. The final solution
can then by computed with graph-euts,
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ure 3: Example of the resulting probability estin
in each image the ground truth (GT) is indicated. Left:
the probability given by random forest, Pr. Right: the resulting segmen
using P, overlaid on the original image.

Middle:
Poand a3,

slic the initial

The Potts model penalizes neighbaring voxels if they

take different labels. Let x, be a Bool
indicator variable for voxel i, Le., 7, € {0, 1}. Then, for two neighboring vaxels z, and x,, the cost
should be zero if x; = 7, and A otherwise, where A is a positive sealar. This cost can compactly be
written as Azy(1 — xy). Further, the data cost for voxel i i set to take value 1/2 — P,(i) if 2, = 1
and zero otherwise. This favors voxels with probabilities in the interval 0.5, 1] to be foreground
and voxels with [0.0.5] to be background.

In summary the final segmentation. @*. i given by the solution to the optimization problem:

n;lzlul‘uil‘(l, r’.m)-xi Y mgrdi - =), )
elony & -

=1 jeNi)

an

where A is a regularization weight and sy, compensates for anisotropic resolution. For ull organs
we use a G-connected neighborhond A, In order 10 save memory and speed-up caleulations we
volume around the zero level of the distance map D with & 20 voxels targ
atly using the graph-cut implement

ouly process e

jon of

function in (1) is submodular and is minimized effic

3  Experimental Results
All the tuning parameters in our system have been set by leave-one ont cross validation on the
first 15 of the 20 whole-body CT images available in the VISCERAL challenge. The § remaining
images have been used to validate the performance of the random forest classifier and the graph-cut

segmentation. In the training phase, the first 15 images have served as the atlas set, while in the
final version all 20 images are utilized in the atls

Our system has been evaluated on a test set of 10 whole-body CT images by the erganizers of
the VISCERAL Anatomy Graud Challenge at ISBI 2015. Note that this test set is only available
to the organizers. The final results are given in Table 1 together with the best competitors to date:
 CMIV - “Center for Medical Image Science and Visualization, Linkiping University”,
o HES-SO - “University of Applied Scieices West and” and
© SIAT - “Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences”.
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robustness and aceuracy of multi-atlax based anatomical segmentation. Neurolmage,

5101

[I5H12]

at graph euts on structured grids.

O. Jamriska, D. ing. Cache-effic
IEE) 3680, 2012.

Conference on Computer Vision and Pattern Recognition, pages 36T

[KBG*11] F. Khalifa, GM. Beache, G

, IS, Suri, and AS. ELBaz, State-of-the-art

medical image registration b survey. Tn Multi Modality State-of-the-Art
Medical Image S and R gies, pages 235 — 280, Springer,
2011

HA. Kirisli, M. Schaap, S. Klein, LA. Neefjes, AC. Weustink, T van Walsum, and W.J.
Niessen, Fully antomatic cardiac segmentation from 3d cta data: a multi-atlas hased
approach. Proceedings of SP1

[ORS*01] S. Ourselin,

structure fro
2001

G. Subsol, X. Pennec, and N.
plogieal sections.  fmage and

vache. Reconstrueting a 3D
on computing, 19(1):25-31

[SDP13]  A. Sotiras, C. Davatzikos, and N. Paragios. Deformable medical image registration: A

survey. IEEE Transactions on Medical Imaging, 32(7):1153-1190, 2013.

SKO15| L. S
subject medical image using a approach.
posium on Biomedical Imaging, 2015.

e, O. Enqvist, F. Kahl, and M. Oskarson, Tmproving robustoess for i

H. Wang. JW. Sub, SR. Das. J. Pluta, C. Craige, and PA. Yushkevich. Multi-atlas seg-
mentation with joint label fusion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(3):611-623, 2013.
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Organ HESSO_SIAT.
Left Kidney omt -
Right Kidney om0 -
Spheen 003

Liver

Unirary Bladder

wcke Body of Left Rect
Muscle Body of Right Re
Lumbar Vertebra |

us Abdominis

Pancreas
Left Psas Major Musclo
Right Paoas Majoe Muscle

Adrenal Gland
Right Adrenal Gland

Average oes -

Table 1: Final results measured in DICE metric for whole-body CT images. Our approach gives
the best results for 13 out of the 20 organs, Here ' means that no segmentation was provided,

4 Conclusions

We have demonstrated that by using a feature-hased approach to multi-atlas segmentation, it
is possible 1o reliably locate and segment organs in whole-body CT images with state-of-the-art
results, Still, there is room for improvement, For example, there is no guarantee that the system
produces a valid organ shape. We are currently working on ways to directly incorporate such
shape priors in the framework, Further, the speed of the system can be improved, for exampl

circumventing the need to perform 20 pairwise registrations for every new target image
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Abstract

Tn this paper. an automatic multi-organ segmentation based
arning and statistical shape model search
nple but robust Mul
jerarchically locate and
multiple organs, To ensure the generalization o
lative location information between orgs
Left lung and right
pre-segmented, then lver and spleen are
tion in whole body and its relative lo-
s finally detected upon the features
nd
appearance models are constructed for model fitting. The fi-
nal refinement delineation is performed by hest point searclh-

on multi-boost
was proposed

classifier

detected upon its I
cation to lungs. kidney
of relative location o liver and left lung. Second, shape

profile classifier and is constrained

with mli-boost cluefied probubilities, intensity and gra-
dient features. The method was tested on 30 unseen CT
and 30 unseen enhanced CT (CToe) datasets from 1SBI 2015
VISCERAL challenge. The results demonstrated that the
multi-bocst. learning can be used to locate multi-organ ro-
bustly and segment hung and kidney accurately. The liver
rehing

and spleen segmentation based on statistical shiape s

has shown good performance too.
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1 Introduction

Abdominal organ seguen

al step in the multi-organ visualizatic
1o now, some methods  (Okadal2, Wangl4) have been p
clationship among organs is very bene

nosis and therapy.
of them showed that information about the spat
antomatic 3D multi-organ localization. Previous studies also indieated that segmentation in # hi-
erarchical way is more robust [Wangl4, SelverLd]. In our previons work [Lild], we used Adaboost
and statistic shape model (SSM) prior knowledge 10 segment liver successfully. Now we extend
this framework in multi-organ segmentation as shown in Figure 1. The differences are in two-fold.
Firstly, Multi-Boost [Ben12] is employed to classify two organs one time in a top-down order.
last organ segmentation result will be used to classify the next Jovel
4 customized specific shape result, free searching is directed by K

1 with vexel-k d such as ibability, intensity a

(i | e

PR ——

Figure 1: The framework of multi-organ segmentation

2 Method

2.1 Model Construction

SSM model was constructed from 20 CT and 20 CTee training binary segmentations. At first,
reasonable region of interest (ROY) of the training binary images is extracted and gencralized
Procrustes aligned. Then one smooth and normal reference mesh is obtained using marching cubes
wethod. Finally n set of corresponding shapes are ereated by registration of the reference
shape to the a binary images, The SSM is constructed by Statismo toolkit [Luthil2] and
The local appearance model of each organ s established by a KNN
ity and gradient profiles informatic de, outside nnd at the true
organ boundary as suggested in [Heimann07].

2.2 Multi-organ Localization

Image features such as intensity, location and contextunl information nre used to train a mlti-
boast. classifier. To ensure the i ability of the Tocation

between argans, argan and whole body were exploited. Template matching is employed to extract
the organ ROI as shown in Figure 2(a). Localization and segmentation i performed in  top-down
order - first left and right lung, then liver and sploen, at last left and right kidney, as seen in Figure
2(b). Thresholding was applied to the probability image of the boosting classified ROI image to
et the pre-segmentation mask. Due to good bovsting clasification precision for lung and kidney,
the pre-segmentation mask is used as the final segmentation.
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“Tuble 1: Multi-Organ Segmentation Results

= Non-Contrast CT Contrast-Enbanced CT
Dice Coeflicient | AvgD (mm) | Dice Coelficient | AvgD () |

Left Lung 52 0101 0.966 0.060
Right Lung 0.957 0.094 0.966 0.078
Liver 3 203
Spleen 3 0.896 0385
Left Kidne: 0.910 0171
Right Kidney 0.922 0.131

4 Conclusions

multi-organ segmentation method was propased. The method
oundary

In this paper,  robust and automat
different pri . sch i i of brgans, intensit
|m)|)|1~s d shape variation for robui wodel locali model fitting and free
searching. The method has been validated on ISBI 2015 VISCERAL challenge and showed good
performance. Future work will extend the framework to more abdominal organ segmentation.
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Maodel localization and segmentation of lung and kidney: (c) Shape fitting for liver and sploen,
with pre-segmentation distance map (red), continued by boundary profile search (white)
free-searching directed by the boundary profile classifier (green).

2.3 Active Shape Model Search

nsform parameters are initialized first by rogistra M shape to the
Appearance model is utilized for accurate parameters
~classifier shifts each landmark to its optimal displace-

then calculated through matrix operations.

Shuilarity and shape 1 on of §

distance map of the pre-scgmentation im;
scarching [Cootes95]. Previous trained K!
ment position, similarity and shape parameters a
“This process is performed ite ¢ until the parameters converge.

2.4 Appearance Profile Classifier directed Boundary Searching

In this step, the goal is to find the optimal confidence position for each mesh vertex. Due to high
boundary profile classification method. However, in step 2.3,
N may overflow or fail to reach the true boundary as illustrated
in Figure 2(c). The target position around the one searched by N position for
convenience. The points around the KNN position are selocted as candidate points. Each candidate
point is assigned by previous Adaboost probability obtai where both the intensity
and the gradient are scaled to [-1,1]. The point with maximum yoting value will be the optimal
confidence position. To preserve the smoothness of the shape, the point can only move to the
computed best position in a constrained step. This process stops after iteration of user-specified
numbers,

the best positions caleulated by

3 Results

Twenty non-contrast CT and twenty contrast enhanced CT (CTee) training volumes were used
for ench multi-boost classifier and KNN boundary classifier training. SSM was built on all thirty
datasets. There are 2562 landmarks for the mean liver shape model and 1520 ones for the mean
.plwn shape model. The experiment was run on 30 unseen CT' and CTee datasets and evaluated
by Dice coefficient and average Hausdorff distance (AvgD). The evaluation results are shown in
Table 1

Hierarchic Anatomical Structure Segmentation Guided
by Spatial Correlations (AnatSeg-Gspac): VISCERAL
Anatomy3

Oscar Alfonso Jiménez del Toro Yashin Dicente Cid

osear jimenezishevs.ch yashindicentefihevs.ch
Adrien Depeursinge Henning Miller
adrien.depeursingetihevs.ch heaningmuellerhevs.ch

and

University of Applied Sciences Western
University and University Hospitals of Geneva, Switzerland

Abstract

Tocal-

Medieal image analysis techniques requine an
ization and segmentation of the corresponding anatomical
As part of the VISCERAL Anatomy segmenta-
chmarks, a hierarchical multi-atlas multi-structure
tion approach guided by anatomical correlations is
proposed (AnatSeg. The method defines a global
alignment of the images and refines locally the anatomical

rest for the smaller structures. Tn this pa-

regions of in
r, the method i evaluated

computed tomography
ispic obtained the lowest average Hausdorif
distance in 19 out of the 40 possible structuze scores in the
test set. CT scans.

1 Introduction

s and computer-aided diagnosis initially roquire an accurate location and seg-
uually annotating the

Medical imnge ana
mentation of the ires present. The i ive task of m
current large amounés of medical imnge data duly prodiuced estricts the implementation of further
analysks by computer algorithms [Doi05]. Different approsches have been proposed to automati-
ple or single anatomical structures within the patient images (LSL* 10, CRK* 13]
The VSual Concept. Extraction challenge in RAdioLogy projoct (VISCERAL') organizes public

Copyright © by the paper's authors. Copyeng permitted only for prycate and academic purposes.
Soksed (e ): Proceedings of the VISCERAL Anatenny Grand Challengs
the 2015 [EEE International Sym Diomedical g (ISBY), New York, NY, Apr 16,2015
publihed at bsp:/ /ceur-ws.ong

www.visoernl.ou/, as of 1 Apel 2015




Jiménez del Tora et al: Hierarchic Anstomical Structure Segmentation

Benchmarks to test multiphs segruentation approaches on the sune available medical dataset for o
abjective evaluation of the algorithms [JTGM*14]. The VISCERAL data set has been manually
annotated by radiologists and es real medical image e from clinical routine in hospi-
tals. The henchmarks are set up in a cloud environment platform designed o host large amounts
of medical data with equal computing instances for the participating research groups [LMMI 1],
hierarchic Anatomical structure Segmentation Guided by spatial correlations (AnatSeg-
Gspac) [JTML3, JATGM* 14, JATMI4] has been previously proposed and tested in the first two
VISCERAL Anatomy benchmarks. This approach requires no interaction from the user and gener-
ates a robust segmentation for multiple anatomical structures with short re-training phase for new
scan parameters or additional structures [JATM14a]. The evalnation and results of AnatSeg-Gspac
in the VISCERAL Anatomy3 henchmark are presented in the following sections.

2 Materials and Methods

21 Dataset

For the VISCERAL Anatomy3 henchmark 20 CT contrust-enhanced of the trunk (CTee) and 20 CT
whole body unenhaneed (CTwh) with their manual snnotations (up to 20 anatomical struetur
were provided o the participants for training. For the impler spac in this
benchmark a subset of volumes (7) with all or the majority of manual annotations were selected per
modality as atlases. Furiher information on the VISCERAL data set can be d in [JdTGlI“} ll
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roposed method obtained the lowest average Hussdorfl distance of the Anntomy$ beneh-
12/20 structures in CTee (Table 1) and 7/20 structures in CTwh (Table 2). The DICE
ot seores mre also preseated for all the methods submitted in the bencimark {Tuble 3 and

Table 4).

Table 3: DICE coefficient. results in the test set. trunk CT contrast-enhanced (CTer) of the VIS
CERAL Anatomy3 benchmark (Anatomy3 Leaderbonrd, http://www.visceral.en/Leaderboard/,
as of 1 April 2015). The proposed AnatSeg-GspaciJiménes del Toro et al. Wt grey) was the
only submitted method that segmented all available anatomical structures in both CT modalities
anced and une
ICE Coefficient

Table 4:  DICE coefficient rosults i the test set unenhanced CT of the whole
body (CTwh] of the VISCERAL Anstomy3 benchmark  (Ansomy3  Leaderbonrd,
It/ fwewow.visceral eu/Loaderboard/, as of 1 April 2015). Highlighted are the best DICE
averlap scares obtained in the benchmark by AnatSeg-Gspac in 7 clinically relevant anatomical
structures: left and right lungs, thyroid, pancreas, gallbladder, left and right adrenal gland

DICE Coefficient

4 Discussion and Conclusions.

The proposed method showed robustness in the segmentation of multiple struetures from two
differcnt imaging modalities wing o small training set. Both the distance and m'\"r]ap scores in this
and the previous Anatomy shew A Gapae outperforms ot 1 some

of the smaller anatomical struetures (e.g. both adrena
best overlap for bigger and hi
A

e, glbloddec). T, can nbio obtain the
h contrasted structures like the lungs

s B-spl
tions, Although the number of registrations and the size of registered regions are reduced nsing
anatomical correlations, the execution time is around 13 hours for a complete CT volume. A faster
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22 AnatSeg-Gspac

The proposesd method performs lti-atles multi-structure segmentation defi
anatomieal regions of interest in their spatial domain, The bigger and bigh contrast anaton
cal structures are used as reference for smaller structures with low conteast, which are consequently
Barder (o scgment. T penl (o recduce the amount of registra-
tions needed for the igure 1, a sample
segmentation output for one ing all the anatomical structures evalu-
ated in the VISCERAL benchmarks is shown. Further information on the AnatSeg-Gspac method
can e found in the previously referenced papers.

g

3 Evaluation

For the Anatomy3 beochmark the test set included 10 CToe volumes and 10 CTwh seans. Twenty
different evaluation metrics are peovided o the participants about their algorithm performance for
each anatomical structure, The evaluation phase is performed in the Azure cloud by the orzanizers
with no intervention from the participants,

Table 1: Average Hausdorff distance results in trunk CToe test set of the VISCERAL Anatomy3
benchmark (Anatomy3 Leaderboard, hiep://www. visceralen/Leaderboard/  as of 1 April 2015)
Competitive scores were obtained for kidneys and lungs compared to other organ-specific methods.

Average Hansdorf distance resnlts in CT whole body (CTwh) test set of the VISCERAL
Anatomy3 benchmark (Anatomy3 Lesderboard. http:/ /wuw visceral.en/ Leaderboard /, as of 1
April 2015). The method A Gapac generates robust. segmentations for the big structures
like the lungs (best benehmark scores highlighted). Moreover, it also shows overall better e
particularly for small structures like thyroid, gallbladder and both adrenal glands.

Average Hausdorff Distance

ams
ms

0D 1057 1614 1991 163 33 47 041 05K G BRI 075 08
21 0368 or 0186 0ime 1iss
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code implementation and better selection of the relevant atlases may reduee the number of necded
registrations and thus the execution time of the method.

The methor can be extended 0 the other imaging mod clude more anatomical
s with short re-training phases. This is particnlarly important for its application with new
ers contuined in brge not annotated data sels. Further clinieal image
that may require the location of additional structures, might also benefit from this feature or include
the autpnt Ioeations of the method as an initialization step.
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Abstract

“T'his work presents the application of a discrete medical im-
age registration framework 1o multi-organ segmentation in
different modalities. The algorithm works completely auto-
‘matieally and does not have to be tuned specifically for dif-
ferent datasets, A robust similarity measure, using the local
larity context (S5C), is employed and shows to out-
perform otber commonly used metrics. Both affine and de-
Tormable ion aro driven by a d sam-
pling (decds) strategy. The smoothness of displacements is
enforeed by inference on a Markov random field (MRF), using
4 tree approximation for computational effieiency. Consen-
sus segmentations for unseen test images of the VISCERAL
Anatomy 3 data are found by majority voting.

1 Introduction

Organ sexmentations are an important processing step in medical image analysis, o4, for image-
auided py, or improved denl dingnostics,  General solutions are
‘preferable over organ specific models for large scale image processing. Machine learning approaches,

o pepular random decision forests (RDF), have been recently used for mulli-organ
1309] and segmentation [GPKC12), yet for more challenging modalities (e.g. strue-
fural MRI) they have had limited suecess. This i partly due to the inhomogensous itensity
variations within and across MR scans. based multi-atlas can provide
more tobustness by using contrast-invariant similarity measures to guide the alignment of atlas to
patient data. Here, we propose to employ a discrete registration model, which can capture large de-
formations to accurately segment volumes with large differences in patient anatomy and geometry.
Combined with a robust mult-modal similarity metric (seli-similarity context) it can be applied
o registering both CT and MRI scans reliably. The method is briefly reviewed in the nest section

Copyright (8 by the puper’s authars, Copying permitesl ondy for private wnd acadenie purpascs.
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Table 1: Experimental results for training dataset of VISCERAL Anatomy 3 chalkenge. Diec
volume overlap for the 7 most common organs (psoss major muscles are abbreviated by pmm)
in abdominal and thorax scans when using majority voting. The results of [GSG14] are from a
different subset of the challenge (Anatomy 2), so there are not direetly comparable.

‘method Tliver spleen  bladder 1 kidoey | kidoey r pmm | pmm | avg

| dends+SSC CT-CT | 082 084 082 0.a1 081 085 0.872
deods MIMR-CT | 077 066 016 062 085 069 0.610
deods+NGF MR-CT | 077 074 031 05 086 075 0.673
deeds4+88C MR-CT | 0.52  0.78 044 0.62 0.88 080 X 0.732
NiftyReg + MI MR-MR | 081 079 005 058 0T7 0.52 136 | 0.554
[CSGL4 MB-MR | 083 066 021 088 085 064 0.677
deeds+8SC MR-MR | 080 0.52 0.63 (.55 0.88 0.79 176 | 0.T44
propesed Test MR-MR | 0.79  0.71 0.36 0.78 0.83 0.76 0.78 | 0.714

4 Results

Our resulis are summarised in Table 1 for a subset of 10 training scans of the contrast enhanced
(ce) abdominal MRI modality (or thorax/adominal ceCT) and a leave-one-out validation. It can
be seen that MRI segmentation Is substantially more challeaging yielding average results of Dice
averlap for T organs of at most 0.744, while the results for the same setting for CT scans are ~0.13
higher. Either of the two enmpared diserete optimisation strategies, by Gass et al. [GSG14] and
our framework (ILIBS13], ontperforms the continuons optimisation approach of [MRT10]. Using
S8 as similarity metrie improves the segmentation by 0.12 compared to MI and by 106 compared
to NGF within the same framework, The multi-modal segmentation, for which we used MRI
seans as fixed and CT' seans as moving atls scans, shows pearly identical acenracy to using same
modality priors. This is an interesting ﬁndmg which could be employed for generating synthetic
CT scans from MRI scans, eg. for MRPET rconstruction [HS8*08]. Due to time limitations
only preliminary results for the hidden test danmh conld be computed (last row of Table 1), for
which we employed only three atlas seans each, We anticipaie further improvements for aur final

ults, which will subsequently be published on the VISCERAL leaderboard. The run-time of our
algorithi on the virtual machine was on average 4 minutes per registration, which can be reduced
with an optimised CPU implementation to less than a minute.

5 Conclusion
We have demonstrated that deformable registration using diserete optimisation enables accnrate
arity metric and optimisation
strategy has been found to be important for achieving high overlap. Local simi
atlas performance estimation and advaneed label fusion [ALLY] may further improve the resnlts.
While machine learning techniques alone may not achieve the same accuracy as registration-hased
es for MRI the combination of both can boost the performance. In
experiments, we found that an RDF trained with both atlas-ased priors and intensity features
[MWG15] improves the segmentation overlap of liver, spleen und kidneys by =0.06,
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and the experimental setting detailed thereafter. The results on both training and tst datasets
are discussed in Soc. 4 and compared to some state-of-the-art approaches,

2 Method

Diserete optimisation can capture large motions by defining an appropriate range of displacements
u. It enables a flexible choice of different similarity terms, since no derivative is required. We use
the framework presented in (HIBS13], which defines a graphical model with nodes p € V {with
spatial location x,.) that correspond to contral points in a uniform Bspline grid. For each node,
the hidden labels fp (from a lage quantised set £) are defined as potential 3D diplacoments
fo = Wy = {tp. vy} betwoen a control point p in the fixed image F and moving image M.
Erdges between podes used for inference of the pair-wise regularisation costs R(fy. ;) (p.g € &) are
modelled by a minimum spanning tree (MST) for computational efficiency. The displacement field
i regularised using the squared difforences of the displacements of neighbouring control points:

s gl
iy g E&r T sl w

For the image similarity (data term) self-similarity
context i based on boeal patel distanoes ch image and invariant 1o eontrast
change, robust to noise and modality independent. The dissimilarity metric D, the Ly norm be-
tween 04 bit binary descriptor representations SSCp (for fixed image) and S5Cy (for moving
] at two locations x and x + w, ean be efficiently caleulated in the Hamming space:

Dixy ;) = 1/[P| 3 Z{SSCp(x, + u) & SSCurlxp + up + u)} 2
=

iptors are nsed [HIP+13]. The sell-

where @ defines an cxchusive OR, = a population count and y & P the local patch coordinates.
The combined evergy funetion with regularisation parameter o becomes: E(f) = 35,0 DU) +
5, g1ce Bl £;). Belief propagation [FHOG| on the MST (our relaxed graphical) is emplayed to
find thie global miniuim without iterations in only Lo pisses

Prior to the # block-matching based linear registration using ako the
SS5C metric is employed as detailed in [HPSHI4].!

3 Experiments
The deformations between different anatomies make a large mumber of degrecs of froedoms nec-
essary. As pre-provessing the images are resampled to an isotropic resolution of 18 x 1.8 x L§
mm? and padded or eropped to have same dimensions, For the affine pre-rogistration, three scales
of control-point grids with spacings of [1,8,7) voxels are used. The displacement label space is
definedd by two parameters: munber of steps fu and quantisation step ¢, which together define
the label space £ = g 0.1, +luy ) voxeks, Wo used yae = [6.5,4] and g = [5,4,3] voxels.
For the deformable registration four scale levels with spacings of (8, 7,6,5], numbers of steps of
losax = [6,5.4,3] and quantisations of g = [4,3, 2, 1] voxels were used. The mumber of random sam-
ples e the regularisation weight were left at their default parameters 50 and 2, Tnverse consistent
s improved by employing a symmetric ealelation of deformations (see [HIP*13]).
“Tio asses the impact of the similarity metrie, we additionally performed experiments nsing mutual
information (MI) and normalised gradient fields (NGF) [HM0]. For a more detailed comparison of
the optimisation, we also applied the popular contimuous-optimisation based framework NiftyReg
IMRT*10] ( parameterisation) with an alfine initialsation [ORPA0]

FOnur saftware is pblicly available for downlond ot www mpheinrich.de (deedsRegSSC)
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Abstract

The segmentation of lung volumes constitutes the first step
for most computer-aided systems for lung diseases. CT
(Computed Tomography) is the most common imaging tech-
nique used by these systems, so fast and aceurate methods are
. In this pape

needed to for allow early and reliable analy

an efficient and fully automatic method for the segmentation
of the lung vol 0 CT s preseuted. This method deals
with the initial segmentation of the respiratory system, the
posterior extraction of the air tracks, and the final identific
tion of the tow lungs with 3 novel approac he system
relies only on anatomical assumptions and was evaluated in
the context of the VISCERAL Anatouny3 Challenge, ach
ing one of the brst resnlts.

1 Introduction

The first step of most computer-aided decision support systems for lung diseases is to scgment
the lungs. Moreover, an aceurate segmentation of the two lungs cau help the localization of other
organs such as the liver or the heart that are closely related. X-ray computed tomography (CT) is
considered to be the gold standard for pulmonary imaging. In the literature standard approaches
for segmenting the respiratory by thresholding the gray level images can be found in [IM03,
HHRO1, EBFFR02, LNCO7]. The approaches are based on knowledge of the air gray-Jevel in CT
scans as CTs are based on tisue de . the gray range in the lungs regions can be

affectod by the radiation applied 0 acquire the CT and the possible change of the organ due to
diseases (such as Fibrosis).
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image contains valucs that are clearly larger than 0 in the s rogious inside the body, and close
10 0'in the other regions (see Fig. 2¢). In this ney
d, which yields a binary mask (see Fig.2d). Arti
air, such as the plastic bed, may be selected in the clustering, but are removed by analyzing the
aspect ratio of the corresponding bounding boxes. Finally, the biggest connected 3D region s used
as the initial lung mask. This region showed to include either hoth lungs connected by the trachea,
the air track. To deal with th
process adso selects all air blocks in the same axial slice-range, Le., in the same slices where the
largest. 3D region is present and removes the regions that can not be easily connected to the lungs.

€3[%

0] ()

case, the

pne lung in the case of not. being connected by

iratory system inside

s d posterior clustering for segmenting the res
the body. (a): . (b): Dense-body after flling holes. (c): Absolute difference betw
() and (b). (d): Mask achieved by 2-Means clustering over (c).

3.2 Removing trachea and primary bronchi

In order 10 remove the trache and primary bronehi, the process defines a plane that divides the
3D image into two parts, leaving an equivalent. number of mask-vaxels on cach side. This process
uses the center of mass of the mask obta The plane is used as the referes
in e nputed (see Fi
Finally

ch slice and the Euclid pi
ach conencted 2D component (CC) is assigned to the maximum distance found among
all its constituting voxels (soe Fig. 3b). The regions with a maximum d the central
below a threshold are considered part of the air track and removed, nu- :hmlwhl is dynamically
defined for

I slice and patient according to the size of the mask.

(] & (@

(n) (b)

(a): Distance image to the reference axis (in gray). (b): Connected components labeled

i pic threshold to remove

Figure
with the

wn distance found in their pixels. (c): D;

3.3 Right-left

After removing the trachen and the primary bronchi, two scenarios are present: cither the lungs
were already 3D-disconnected or they sex

g identification and mask refinement

Cid et al: Unsupervised Lungs segmentation in CT

This work presents « novel and fully automatic approach for segmentiug the lungs. We first
apply a K-Means Mac67] clustering of the CT intensi b a fixed number of clusters equal
g the respirato In the second step, the air tracks are removed from
the initial segmentation, A novel tr
lung volumes. The final step consist of identifying the right and left lung and refining the final
sk by mathematical morphological operations in 3D. The separation of right and left hungs is
rlmllcm;mg when both lungs seem to be connected. In this case, a bidirectional process across the
2D axial slices is applied. 1¢ allows to reduce the splitting error due to the information propagated
between slices. Once both lings are identified, a refinement in 3D is applied to each lung mask
“The entire approach is completely unsupervised and provides an accurate and fast fully automatic
segmentation of the lungs

hnique is presented based on the mass-distribution of the

2 Database used

VISCERAL' Anatomy3 is the benchmark used in the VISCERAL Challenge at ISBI 2015.
benchmark contains a set of medical image series with annotated structures from various modal
We evaluated our method for segmentation of right und left lung in the modalities of CT and with
and withou contrast agent (CTee). A total of 20 trainig patients in each modality were provided
0 optimize prrameters.
e methods propose

This

by the participants were executed by the organizers of the challenge in
luml and tested on & dataset of 10 patients per modality. The test set is not accessible by the
ipants to avoid possible overfitting of the methods. Despite the challenge offering a training
set. the method proposed in this work was set up based on anatomical assumptions and 5o training
was required. Patients from other datasets wero used to define these assumptions, keaving the
training set of this challenge for verification purpuses.

3 Methods

The method presented is composed of three parts: an initial clustering of the CT values for seg-
menting the complete respiratory system (lungs, trachea and primary broncki); a process to remove
the trachea and primary bronchi; and finally, the identification of right and lefe lung with a refine-
ment of each lung mask (sce Fig, 1). Some steps of the process are performed in 2D following the
axial din of the CT volume, ie. going through the axial slices.

Removing  [RETTS

with o abels

Final
mask

Respiratory
systs

segmentation

volumes in CT.

Figure 1: Pipeline of the proposed method for segmenting the I

3.1 Respiratory system segmentation

The proposed method for segmenting the respiratory system is hased on the assumption that the
Iatter is the biggest 3D connected air region nside the body, The first step is to 6l the holes
in the axial slices by a filling operation [S0i03], where a hole i defined as an area of dark pixels
surrounded by lighter pixels. The resulting image con se-body (see Fig. 2b). Then the
absolute difference between the original and the dense-body image is computed. The resulting

“htep://wwy. visceral . ew, us of 30 March 2015
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connected 3D component. An algorithm going through the sorted slices was designed to predict
the best. boun the lungs were connected. First, an initialization of the
right (R) and left (L) labels is performed in the first slice presenting two significant CC. Then,
the following slices with two CC (so-called 2-CC slices) are consistently Labeled by projecting the
hels from the previous slice. For the s senting only one CC (so-called, 1-CC slices) (see
Fig. da), the algorithm applies a dilation on the labeled regions from the previous 2-CC slice,
and projects them into the region of the current CC. The resulting labeled region contains piels
with one label (R or L), and with two labels (both R and L). This process propagates a boundary
assumption to the current slice depending on the previous slice. This propagation results in &
different labeling if the slices are selected in sscending or in descending order. Hence, the process
is executed in both directions and the results are fused. The pixels with double label and the pixels
with differen label due to the double execution define a region of conflicts, as it is shown in Figure
ib. Then, a K-nearest neighbor algorithm [DHS01] in 3D is applied to decide the best label for
each pixel of this region. Other small regions with 1o label afier the procedure are labeled nsing
the adjacent slices. Once both lnngs are identified, the holes and the cavities are filled for cach
lung mask independently, achieving the result presented in Figare de.

v in those slices whe

(a) (b

Figure 4: (n) Axial slicc presenting only one counected component. The rogion in the red bo
shows where the two lungs are connected, (b) Detail of the in (a): Tn black, phels
with double label (R and L) due to the procedure explained in (c) Final refined mask
after identifying lefi and right lungs.

4 Results

The results shown in this section w
lenge at ISBI 2015. Table 1 shows a subset of the most relevant results. All results are published on
the VISCERAL wobsite. The evaluation was performed on the test set detailed in Section 2. The
system preseted in Section 3 showed to be one of the best algorithis presented in this odition,
achieving & minimum Dice coefficient of 0.972 for both lungs in CT and CToe, and a maximum
Hausdorff distance of 0,052

re provided by the organizers of the VISCERAL Grand Chal-

5 Conclusions

xtraction of the respiratory
eghons of interest, allowing to

The method presented in this paper introduces a new method for the
system in chest CT volumes, This il step clearly separates the

apply a fast K-Means elustering with a fixed number of 2 1. It detects the lung regions in
a larger gray-level range than standard thresholding. Moreover, the extraction of the air tracks
and the posterior differentiation of the lungs were done with simple grometric techniques that are
computationally inexpensive. The procedures provide a fast system for segmenting the lungs in CT
i that can be applied for Large datasets. Furthermore, all steps ely on anatomical nssumptions
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Table 1: Table showing a subset of the performance measures provided by the VISCERAL Chal-
lenge. The best results for each modality and lung are highlighted in bold.

Dice coofficient Avorage HausdarfT distanco

&3 CTee CT w

LL  RL | LL RL | LL RL | LL RL
Our method | 0.972 0974 [ 0.974 0973 | 0060  0.0M6 | 0.050 0.052
Participant 2 | 0.972 0.975 | 0.056 0963 | 0.043 0,038 | 0.071 0.065
Participant 3 | 0961  0.970 | 0.072 0971 | 035 0006 | 0.076 0070
Participant 1 —  — |05 0| — —
Participant § 0,066 0.966 | 0.101 0094 | 0.069 0,069

and require no training, The method showed almost perfect performance in CT and CTee, The
presented segmentation can applied directly to new CT seans with no further modifications,
The participation in the VISCERAL challenge proved the reliability of this new efficient s fully
atomatic method, achieving an average Dice coefficient of 0.973 and an average Hausdosf distance
of 0.0495,
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