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Executive Summary 

We analyze the results of the segmentation of the Anatomy1 and Anatomy2 benchmarks to infer more 

knowledge about the evaluation metrics, namely the metric sensitivities and some problems in relation 

to validating fuzzy segmentations. In particular, we take a deeper look at metrics by means of the 

following: (I) Analysis of the correlation between the 21 metrics that have been implemented in the 

evaluation software. (II) Analysis of the rankings produced by the metrics, compared with two manual 

rankings done by two different radiologists. (III) Performing the metric selection method [2] on the 

segmentations to rank the metrics according to their suitability for the segmentations, and judging this 

ranking using the manual rankings. (IV) Evaluating the same segmentations against fuzzy variants of 

the ground truth that are generated synthetically; then analyzing how the metric rankings differ. 

The analysis on correlation among metrics shows that there are two main groups of metrics in terms of 

correlations, where the metrics in each group strongly correlate with each other, but have weak 

correlation with the metrics in the other group. After a deeper look into the metrics in each group, we 

found that in the first group, metrics do not take true negative voxels into consideration in contrast to 

the metrics in the second group, where true negatives are considered. Another observation is that the 

correlation between metrics is affected by the overlap between the segmentations compared, that is, if 

the Dice score is high the correlation between distance based metrics and overlap based metrics are high. 

On the contrary, when the overlap is low, distance based metrics are not more correlated with overlap 

based metrics. More detail about this analysis is in Section 2. 

Analysis based on comparing manual expert rankings of segmentations with ranking produced by 

metrics shows: (i) Ranking single segmentations using metrics is less reasonable, since this type of 

ranking is sensible to small differences that are potentially irrelevant and are ignored in manual ranking. 

For this reason, ranking at single segmentation level has in general a weak to moderate correlation with 

manual ranking. (ii) Metric ranking at system level, given there are more than one segmentation 

produced by each system, is more reasonable, if used in combination with statistical testing to decide 

whether two systems differ in their performance. (iii) The result of ranking at system level shows that 

the four metrics selected for evaluating the segmentation benchmarks (Anatomy 1 and 2), namely the 

Dice coefficient (DICE), the average distance (AVD), the interclass correlation (ICC), and the adjusted 

Rand index (ARI) have a strong correlation with both of the manual expert rankings except for one 

metric in one of the rankings, namely the average distance (AVD) in Ranking 1. These four metrics have 

been selected based on a correlation study, done before the benchmarks, where an automatic metric 

selection method [2] was performed on brain tumor segmentations [8]. More detail about this analysis 

is in Section 3. 

The metric selection method proposed in [2] was performed on the segmentations that have been ranked 

manually by the two radiologists. The metrics are then ranked by sorting them in ascending order 

according their sum of bias, which indicates their suitability for evaluating this set of segmentations, 

where the metric with the least bias is the most suitable. Now, this ranking of the metrics is compared 

with their ranking according their correlation with the manual ranking in order to test the efficiency of 

the selection method. The results show moderate correlation between the automatic metric selection and 

the selection depending on the manual ranking.     

Analysis on fuzzy segmentation was done using (i) fuzzy and binary variants of the silver corpus, 

obtained by fusing the automatic segmentations of Anatomy 1 and 2, (ii) fuzzy segmentations provided 

by one of the participants in Anatomy 2, and (iii) synthetic fuzzy ground truth segmentations produced 

by performing smoothing filters on the original ground truth segmentation. In one experiment, each 

binary image in the silver corpus was compared with its corresponding fuzzy variant, using all metrics. 

The aim was to measure the invariant of metrics against fuzzification. This is to know which metric(s) 

should be used when fuzzy ground truth is used to evaluate binary segmentation and the opposite. In 

another experiment, systems are first ranked by using the binary ground truth (the official ranking of the 

benchmark), and the same systems were ranked using the fuzzy variant of the ground truth, i.e. the 

synthetic volume from (ii). The difference between the rankings in the two cases was observed for each 
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of the seven organs considered. Results show that using fuzzy instead of binary ground truth has a 

considerable impact on the ranking, given that the differences in the performance of systems are small.  

More detail about this analysis is in Section 4. 
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1 Introduction 

1.1 Validation of medical segmentation 

Segmentation methods with high precision and high reproducibility are a main goal for assisting in 

surgical planning because they directly impact the results, e.g. the detection and monitoring of tumor 

progress. Accurately recognizing the change patterns is of great value for early diagnosis and efficient 

monitoring of diseases. Therefore, assessing the accuracy and the quality of segmentation algorithms is 

of great importance, which is a matter of the evaluation methodology. Segmentation evaluation is the 

task of comparing two segmentations by measuring the distance or similarity between them, where one 

is the segmentation to be evaluated and the other is the corresponding ground truth segmentation. 

Thus, the knowledge about the metrics in terms of their strength, weakness, sensitivities, bias, and the 

aspects they measure, is essential for taking the decision about which metrics are to be used in the 

evaluation.  

Medical segmentations are often fuzzy meaning that voxels have a grade of membership, e.g. the silver 

corpus in the VISCERAL project is such a case, where the segmentations are the result of averaging 

different segmentations of the same structure annotated by different annotators. Here, segmentations 

can be thought of as probabilities of voxels belonging to particular classes. One way of evaluating fuzzy 

segmentations is to cut the probabilities at a particular threshold to get binary representations that can 

be evaluated as crisp segmentations. However, thresholding is just a workaround that provides a coarse 

estimation and it is not always satisfactory. Furthermore, there is still the challenge of selecting the 

threshold because the evaluation results depend on the selection.  

 

1.2 Metrics for evaluating medical volumes 

In this section, we describe the metrics that have been selected for validating medical segmentation, and 

have been implemented in the EvaluateSegmentation tool for evaluating medical image segmentation, 

which is available as an open source project under the following link 

https://github.com/codalab/EvaluateSegmentation. The metrics implemented in this tool are presented 

in Table 1. 

These metrics were selected based on a literature review of papers in which medical volume 

segmentations are evaluated. Only metrics with at least two references (papers) of use are considered. 

An overview of these metrics is available in Table 1. Depending on the relations between the metrics, 

their nature and their definition, we group them into five categories, namely: 

 spatial overlap based,  

 pair-counting based, 

 information theoretic based,  

 probabilistic based, and  

 spatial distance based.  

 

The aim of this grouping is to enable a reasonable selection when a subset of metrics is to be used, i.e. 

selecting metrics from different groups to avoid biased results. 

  

https://github.com/codalab/EvaluateSegmentation
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Metric Symbol Category 

Dice (=F1-Measure) DICE Spatial overlap based 

Jaccard index JAC Spatial overlap based 

True positive rate (Sensitivity, Recall) TPR Spatial overlap based 

True negative rate (Specificity) TNR Spatial overlap based 

False positive rate (=1-Specificity, FPR) FPR Spatial overlap based 

positive predictive value (Precision) PPR Spatial overlap based 

Accuracy ACU Spatial overlap based 

F-Measure (F1-Measure=Dice) FMS Spatial overlap based 

Volumetric Similarity VS Spatial overlap based 

Global Consistency Error GCE Spatial overlap based 

Rand Index RI Pair counting based 

Adjusted Rand Index ARI Pair counting based 

Mutual Information MI Information theoretic based 

Variation of Information VOI Information theoretic based 

Interclass correlation ICC Probabilistic based 

Probabilistic Distance PBD Probabilistic based 

Cohens KAP KAP Probabilistic based 

Area under ROC curve AUC Probabilistic based 

Hausdorff distance HD Spatial distance based 

Average distance AVD Spatial distance based 

Mahalanobis Distance MHD Spatial distance based 

Table 1: Metrics implemented in the evaluation SW (EvaluateSegmentation). 

 

For evaluation of medical image segmentation, four metrics were selected from the 21 metrics presented 

in Table 1. The following criteria were considered  

1. The metrics were selected so that they cover as many different categories as possible. One metric 

was selected from each of the following categories: (i) spatial overlap based metrics, (ii) 

distance-based metrics, (iii) probabilistic based metrics, and (iv) pair-counting-based metrics 

with chance adjustment. 

2. Two of the metrics are capable of comparing fuzzy segmentations, i.e. have fuzzy as well as 

crisp definition. For the other two metrics, fuzzy comparison is calculated indirectly by cutting 

the voxel values at 0.5 threshold. 

3. From those metrics that meet the criteria above, metrics were selected that have the most 

correlation with the rest of the metrics in each category. 
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Depending on these criteria, the following metrics have been considered for validating segmentations 

in all the segmentation benchmarks of the VISCERAL project: the Dice coefficient (DICE), the average 

distance (AVD), the interclass correlation (ICC), and the adjusted Rand index (ARI) 

In this document, we provide analysis about evaluation metrics based on the results of the segmentations 

in the Anatomy1 and Anatomy2 Benchmarks. In Section 2, we analyze the correlation between the 21 

metrics presented in Table 1 and discuss the properties of each metric. In Section 3, we present an 

analysis based on comparison between rankings produced by the metrics and manual rankings made by 

radiologists.  Finally, in Section 4, we validate a subset of the segmentations of Anatomy2 against 

synthetic fuzzy variants of the ground truth and discuss the results. 

2 Analysis of metric correlation  

Metrics differ in their properties and thus in their suitability for different tasks and different data. 

Selecting a suitable metric is not a trivial task. In this section we present a metric analysis that was 

initially presented in [1]. In particular, it provides analysis of the correlation between the metrics 

presented in Table 1 to infer information about their properties and capabilities for discovering different 

types of error. Based on this analysis, we provide a guideline for selecting a suitable metric, given a data 

set and a task. 

2.1 Correlation between metrics 

One way to analyze metrics is to examine the correlation between rankings produced by them. Figure 1 

shows the result of a correlation analysis between the rankings produced by 16 of the metrics presented 

in Table 1 when applied to a data set of 4833 automatic MRI and CT segmentations. In this data set, all 

medical volumes provided by all the participants of the VISCERAL project in its two initial challenges, 

namely Anatomy1 and Anatomy2, were included. Each medical volume is a segmentation of only one 

of 20 anatomy structures varying from organs like the lung, liver, and kidney to bone structures like the 

vertebra, glands like the thyroid, and arteries like the aorta. More details on these structures are available 

in [3]. Note that the Jaccard (JAC) and F-Measure (FMS) were excluded because they provide the same 

ranking as the Dice coefficient (DICE), a fact that follows from the equivalence relations between them 

[1]. Also FPR and FNR were excluded because of their relations to TNR and TPR respectively. In a first 

step, volume segmentations were ranked using each of the metrics to get 16 rankings in total. Then, the 

pairwise Pearson's correlation coefficients were calculated. Note that analyzing the correlation between 

rankings instead of metric values solves the problem that some of the metrics are similarities and some 

others are distances and avoids the necessity to convert distances to similarities as well as to normalize 

metrics to a common range. Each cell in Figure 1 represents the Pearson's correlation coefficients 

between the rankings produced by the corresponding metrics. The darkness of the cells represent the 

strength of the correlation. 

Metrics in Figure 1 can be divided into three groups based on the correlation between the rankings 

produced by them, one group is at the top left (Group 1) including ARI, KAP, ICC, DICE, AVD, MHD, 

PBD, and VS and another group is at the bottom right (Group 2) including TNR, RI, GCE, and VOI. 

The metrics in each of these groups strongly correlate with each other, but have no correlation with 

metrics in the other group. The remaining metrics (Group 3) including MI, AUC, TPR, and HD have 

medium correlation between each other and the other groups. A deeper consideration in the metric 

definitions shows that Group 1 and Group 2 classify the metrics according to whether they consider or 

not the true negatives (background voxels) in their definitions. While all metrics in Group 2 include the 

true negatives in their definitions, none of the metrics in Group 1 does this. Note that the adjusted Rand 

index and the KAP measures principally include the true negatives in their definitions, but both of them 

perform chance adjustment, which eliminates the impact of the true negatives, i.e. avoids that the 

influence of the background dominates the result [4]. Also note that the average distance (AVD) and the 
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Mahalanobis distance (MHD) in Group 1 do not consider the true negatives, since they are based on the 

distances between the foreground voxels (non-zero voxels). Considering the true negatives in the 

evaluation has a large impact on the result, since the background (normally the largest part of the 

segmentation) contributes to the agreement. Figure 2 illustrates, by means of a real example, how metrics 

based on the true negatives change the resulting rankings when the true negatives are reduced by 

selecting a smaller bounding cube [6]. Such metrics are biased against the ratio between the total number 

of foreground voxels and the number of the background voxels, which is denoted as the class imbalance. 

This leads to segmentations with large segments being penalized and those with small ones being 

rewarded, a case that is common in medical image segmentation e.g. when the quality of two 

segmentations is to be compared, where one of them is larger, and the other one is smaller than the 

ground truth segmentation. Vinh et. al [7] stated that such metrics need chance adjustment, since they 

do not meet the constant baseline property. 

 

 

Figure 1: the correlation between the rankings produced by 16 different metrics. The pair-wise 

Pearson's correlation coefficients between the rankings of 4833 medical volume segmentations 

produced by 16 metrics. The darkness of each cell represents the strength of the correlation. 
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Figure 2: the effect of decreasing the true negatives (background) on the ranking. Both of the 

segmentations in A and B is compared with the same ground truth. All metrics assess that the 

segmentation in A is more similar to the ground truth than in B. In Á, the segmentation and 

ground truth are the same as in A, but after reducing the true negatives by selecting a smaller 

bounding cube. The metrics RI, GCE, and TNR change their rankings as a result of reducing 

the true negatives. Note that some of the metrics are similarities and others are distances. 

2.2 Influence of overlap on correlation 

Obviously, the correlation between rankings produced by overlap based metrics and rankings produced 

by distance based metrics cannot hold in all cases because when the overlap between segments is zero, 

all overlap based metrics are zero regardless of how far the segments are from each other, on the contrary 

distance based metrics still provide values dependent on the spatial distance between the segments. This 

motivated us to examine how the correlation described in Section 2.1 behaves when only segmentations 

with overlap values in particular ranges are considered.  

Figure 3 shows the Pearsons's correlation between the DICE and each of the other metrics when the 

measured DICE is in a particular range. One important observation is that the correlation between DICE 

and the distance based metrics (AVD, HD, and MHD) decreases with decreasing overlap, i.e. with 

increasing false positives and false negatives. This is intuitive because overlap based metrics, in contrast 

to distance based metrics, don't consider the positions of voxels that are not in the overlap region (false 

positives and false negatives), which means they provide the same value independent of the distance 

between the voxels. It follows that increasing the false positives and/or false negatives (decreasing 

overlap) means increasing the probability of divergent correlation. 
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Figure 3: the effect of overlap on the correlation between rankings produced by different 

metrics. The positions and heights of the bars show how metrics correlate with DICE and how 

this correlation depends on the overlap between the compared segmentations. Four different 

overlap ranges are considered. 

 

Another observation is the strongly divergent correlation between volumetric similarity (VS) and DICE. 

This divergence is intuitive since the VS only compares the volume of the segment(s) in the automatic 

segmentation with this in the ground truth, which implicitly assumes that the segments are optimally 

aligned. Obviously, this assumption only makes sense when the overlap is high. Actually, the VS can 

have its maximum value (one) even when the overlap is zero. However, the smaller the overlap, the 

higher is the probability that two segments that are similar in volume are not aligned, which explains 

the strong divergence in correlation when the overlap is low. Now, since one can assume that the 

probability of wrongly aligned segments is higher when the segments are small and vice versa (the 

degree of freedom for the segment location is higher when the segment is small), it follows that the VS 

is not recommended for segmentations with small segments.  

Finally, the highest divergence in the correlation is observed with the probabilistic distance (PBD). This 

is caused by the fact that PBD, in contrast to DICE, over-penalizes false positives and false negatives. 

This can be explained by means of the definition of the PBD in [1]: differences in the voxel values in 

the compared segmentations have a double impact on the result because they increase the numerator and 

decrease the denominator at the same time, causing the distance to increase rapidly. Actually, the PBD 

even reaches infinity when the overlap reaches zero. PBD behaves the opposite of the VS regarding the 

sensitivity to the alignment, i.e. it strongly penalizes alignment errors, which makes it suitable for tasks 

where the alignment is of more interest than the volume and the contour. 
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2.3 Guidelines for metric selection 

Different metrics have sensitivities to different properties of the segmentations, and thus they can 

discover different types of error.  Taha et al. [2] provide a formal method for choosing the most suitable 

metric, given a set of segmentations to be evaluated and a segmentation task. In this section, we conclude 

the discussion in Sections 2.1 and 2.2 to provide the following guidelines for choosing a suitable metric:   

1. When the objective is to evaluate the general alignment of the segments, especially when the 

segments are small (the overlap is likely small or zero), it is recommended to use distance based 

metrics rather than overlap based metrics. The volumetric similarity (VS) is not suitable in this 

case.  

2. Distance based metrics are recommended when the contour of the segmentation, i.e. the 

accuracy at the boundary, is of importance [5]. This follows from being the only category of 

metrics that takes into consideration the spatial position of false negatives and false positives. 

3. The Hausdorff distance is sensitive to outliers and thus not recommended to be used when 

outliers are likely. However, methods for handling the outliers, such as the quantile method [9], 

could solve the problem, otherwise the average distance (AVG) and the overlap based metrics 

as well as probabilistic based metrics are known to be stable against outliers.  

4. Probabilistic distance (PBD) and overlap based metrics are recommended when the alignment 

of the segments is of interest rather than the overall segmentation accuracy [10].  

5. Metrics considering the true negatives in their definitions have sensitivity to segment size. They 

reward segmentations with small segments and penalize those with large segments [6]. 

Therefore, they tend to generally penalize algorithms that aim to maximize recall and reward 

algorithms that aim to maximize precision. Such metrics should be avoided in general, 

especially when the objective is to reward recall, e.g. segmentations having the goal of tumor 

removal.  

6. When more than one metric are to be combined, the aim should be to select them from different 

categories (Table 1) as well as to avoid selecting metrics that are strongly correlated (Figure 1). 

This is to avoid biased evaluation.  

7. When the segmentations have a high class imbalance, e.g. segmentations with small segments, 

it is recommended to use metrics with chance adjustment, e.g. the KAP measure (KAP) and the 

adjusted rand index (ARI) [4]. 

3 Analysis based on manual rankings 

In this section, we provide an analysis of the metrics based on two manual rankings of segmentations, 

done by two medical experts. Manual rankings provide a references for judging metrics and evaluation 

methods. That is, when evaluating segmentations by comparing them with the corresponding ground 

truth using distance or similarity metrics, one gets scores denoting how similar or how far the 

segmentations are from the ground truth. However, since different metrics provide different scores, there 

is a need of another level of ground truth that judges, which metric provides scores that are more 

correlated with the expert rankings than other metrics.  

Another aim of this analysis is to validate the selection of the subset of four metrics from Table 1 used 

for evaluation of medical image segmentation in the Anatomy1 and Anatomy2 Benchmarks of the 

VISCERAL project.  

In Section 3.1, we describe the manual rankings. We then analyze the correlation between the manual 

ranking and the rankings produced by metrics: in Section 3.2, the ranking is done at segmentation level, 

while in Section 3.3, the ranking is done at system level. Finally in Section 0, we discuss the results of 

the manual ranking analysis.  
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3.1 Description of the manual rankings 

3.1.1 Data set 

To provide a manual ranking, 483 segmentations were selected by medical experts from the output of 

the Anatomy2 participating algorithms. This segmentation set has the following properties:  

 The segmentations correspond to six organs/structures, namely liver, pancreas, urinary bladder, 

aorta, left lung, and right kidney. These structures were selected by medical experts so that 

different aspects are covered, like size and shape, etc.    

 The segmentations corresponds to 110 different medical cases, where a case is defined as a 

combination of a ground truth volume and a structure (organ). 

 The segmentations were produced by seven participating algorithms. However, different 

medical cases were segmented by different number of algorithms. This means for some medical 

cases, seven segmentations are available, but for other medical case there are less than seven. 

For the ranking analysis, only those medical cases were considered for which at least three 

segmentations are available. These are only 92 medical cases. 

 

3.1.2 Manual rankings 

The segmentations described above have been ranked by two different radiologists separately, resulting 

in two different rankings, which we will call Manual Ranking 1 (MRK1) and Manual Ranking 2 

(MRK2). The ranking was performed in a double blind way.   

The following subjective scoring system was observed:  

Score Ranking criteria 

1 Severe deviation to other organs, no connection with expected organ segmentation. 

2 Evident crossing of organ border, organ parts missing from segmentation 

3 Irregular segmentation with respect to segmentations guidelines from Deliverable 2.3.1. 

4 Minor deviations from segmentation guidelines.  

5 Optimal segmentation, organ borders and segmentation guidelines from VISCERAL 

Deliverable 2.3.1 respected 

For each ground truth segmentation, the corresponding automatic segmentations were considered as one 

group, within which these segmentations are ranked. The ranking was created using a point-based 

system, where different qualities are rated using points, i.e. the existence of particular qualities is rated 

by adding pre-defined numbers of points depending on the relevance of these qualities from a medical 

point of view. The absence of the quality is rated by subtracting a number of points and the rank is the 

sum of points achieved. 

As a consequence of this ranking system, rankings have not to start with one and end with the number 

of objects being ranked (which is however the case with metric rankings). Also, different objects may 

have the same rank (which is not common with metric rankings). For example, it is common with manual 

ranking that five segmentations are ranked with 1, 2, 2, 2, 3. This is not common in rankings produced 

by metrics, since equal metric values are very unlikely.  

In order to test how the two manual rankers agree between each other, the Pearson’s correlation between 

the two manual rankings was measured. The correlation between the manual rankings, RNK1 and 

RNK1, is 0.62. This is a moderate correlation, which means that there is a non-ignorable discrepancy 

between the rankers.   
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3.2 Correlation between metric and manual rankings at 

segmentation level 

We analyze the correlation between rankings of groups of segmentations produced by each of the 

metrics in Table 1 and the rankings of the same segmentations based on the manual rankings (MRK1 

and MRK2). This analysis is to infer which metrics have the most correlation with the manual ranking.  

The rankings in this experiment are at segmentation level, which means that individual segmentations 

corresponding to the same ground truth are ranked. To this end, the segmentations were grouped so that 

each group consists of a medical case (volume) and the corresponding segmentations. The segmentations 

in each group are then ranked using each of the metrics by comparing each of the segmentations with 

its corresponding ground truth. The segmentation with the lowest match is given the lowest rank and 

that with the best match was given the highest rank. This is in order to get a ranking that is comparable 

with the manual ranking done based on the point system, as described in Section 3.1.2.  

Table 2 shows the correlations between each of the metrics presented in Table 1 and each of the two 

manual rankings, RNK1 and RNK2. The metrics are sorted according to the correlation with RNK1. 

Note the highest correlation value (0.64) is a moderate correlation, and many of the metrics have weak 

correlation. This is expected, since ranking at segmentation level using the metrics considers very small 

changes, which do not necessarily reflect an improvement, e.g. differences caused by chance. For this 

reason, we provide another correlation analysis at system level, in Section 3.3, that uses significance 

testing to decide whether one system has better performance than another.  

Manual Ranking 1 (MRNK 1)   Manual Ranking 2 (MRNK2) 

metric 
Pearson's  
correlation   metric 

Pearson's  
correlation 

Average distance AVD 0.57   Rand Index RI 0.56 

Adjusted Rand Index ARI 0.54   Variation of Information VOI 0.56 

Dice  DICE 0.54   Average distance AVD 0.56 

F-Measure FMS 0.54   Accuracy ACU 0.56 

Interclass correlation ICC 0.54   Global Consistency Error GCE 0.55 

Cohens KAP KAP 0.54   Adjusted Rand Index ARI 0.52 

Probabilistic Distance PBD 0.54   Dice  DICE 0.52 

Rand Index RI 0.54   F-Measure FMS 0.52 

Jaccard index JAC 0.54   Interclass correlation ICC 0.52 

Accuracy ACU 0.53   Cohens KAP KAP 0.52 

Variation of Information VOI 0.53   Jaccard index JAC 0.52 

Global Consistency Error GCE 0.53   Probabilistic Distance PBD 0.51 

Mutual Information MI 0.47   Mutual Information MI 0.46 

Mahalanobis Distance MHD 0.44   Mahalanobis Distance MHD 0.41 

Hausdorff distance HD 0.43   Hausdorff distance HD 0.40 

Area under ROC curve AUC 0.39   positive predictive value  PPR 0.38 

True positive rate TPR 0.39   Area under ROC curve AUC 0.36 

Volumetric Similarity VS 0.27   True positive rate TPR 0.36 

positive predictive value  PPR 0.27   Volumetric Similarity VS 0.30 

Fallout FPR 0.17   Fallout FPR 0.26 

True negative rate TNR 0.17   True negative rate  TNR 0.26 

Table 2: Pearson’s correlation between each of the metrics presented in Table 1 and the manual 

rankings MRK1 and MRK2 at segmentation level. The metrics are sorted according to 

decreasing correlation. 
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Metrics, in contrast to manual judgment, always attempt to assign two different ranks to two 

segmentations, regardless of how small the difference in the metric scores is.  Therefore, we do not 

expect high correlation between metric rankings and manual rankings at segmentation level. The aim of 

this analysis is rather to find the metric(s) with the highest correlation, regardless of the absolute value 

of the correlation. In Section 3.3, we analyze the correlation between manual and metric ranking at 

system level, where a stronger correlation is expected. 

3.3 Correlation between manual and metric ranking at system 

level 

In this experiment the manual ranking of the individual segmentations done by the medical experts will 

be used to rank the systems that produced the segmentations. Instead of considering groups consisting 

of a medical case (volume) and the corresponding segmentations as done in Section 3.2, we consider all 

the segmentations produced by a particular system for the same organ together. This enables comparing 

the systems based on a statistical test. This is done as follows: For each organ separately, the metric 

scores of the systems are calculated as the average over all segmentations produced by the each system. 

Also the manual ranks were averaged over the same segmentations (in this case, the manual ranks are 

considered as scores). Now, for each system we have an average manual score and an average score for 

each metric. From these scores the systems are ranked depending on (i) the average scores, and (ii) 

significance test using the sign test to ensure that the difference between the average scores is significant. 

The sign test is performed on the score groups that have been averaged. In a first step, the systems are 

sorted according to their average scores ascending. Then the ranks are given as follows: starting with 

the first system (S1), with the lowest score, it is given the rank 1. Then for each next system (Si), if there 

is no significant difference to the previous system (Si-1), according to a sign test, then it is assigned the 

same rank as (Si-1), otherwise the next rank. Note that the same ranking is generated from the manual 

average ranks.  

Table 3 shows the Pearson’s correlation between each of the metrics in Table 1 and the manual ranking. 

3.4 Automatic metric selection 

In this section, we perform the formal metric selection method, proposed in [2], on the same 

segmentations that have been ranked manually by the two radiologists. Given a set of effectiveness 

metrics and a set of segmentations, this formal method aims to find the most suitable metric(s) for 

evaluating the segmentation. The selection method is primarily based on that metrics can be biased 

towards or against properties of the images being segmented, meaning that particular metrics over-

penalize or over-reward segmentations given particular properties. According to this method, the bias 

of a particular metric to a particular property is inferred by automatically analyzing how the average 

scores of groups of segmentations differ in two cases, the first when the segmentations are grouped 

randomly and the second when they are grouped according to the property for which the bias is being 

measured. Once the biases of each metric to each property are inferred, the selection of the metrics is 

achieved based on the sum of biases, i.e. metrics are selected that have the least bias. For this set of 

segmentations, the following properties have been used: segment size, volume size, noise, deviation, 

shape signatures, sphereness, boundary smoothness, and recall. It is important to mention that the 

method provides the possibility to use property weighting to reflect the subjective preference that meet 

the specific goal of the segmentation (more details in [2]).  However, this feature has not been used in 

this experiment, because further analysis of the comments of the ranking radiologists is required to 

determine the property weights.  
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Manual Ranking 1 (MRNK1)  Manual Ranking 2 (MRNK2) 

metric 
Pearson's 
correlation  metric 

Pearson's 
correlation 

Volumetric Similarity VS 0.81  Mahalanobis Distance MHD 0.75 

Jaccard index JAC 0.81  Hausdorff distance HD 0.66 

Dice  DICE 0.81  Adjusted Rand Index ARI 0.65 

F-Measure FMS 0.81  Dice  DICE 0.64 

Interclass correlation ICC 0.81  F-Measure FMS 0.64 

Cohens KAP KAP 0.81  Interclass correlation ICC 0.64 

Adjusted Rand Index ARI 0.80  Cohens KAP KAP 0.64 

Area under ROC curve AUC 0.72  Jaccard index JAC 0.62 

True negative rate 
(Specificity) 

TNR 0.72  Accuracy ACU 0.56 

Accuracy ACU 0.71  Global Consistency Error GCE 0.56 

Global Consistency Error GCE 0.71  Rand Index RI 0.56 

Rand Index RI 0.71  Variation of Information VOI 0.56 

Variation of Information VOI 0.71  Average distance AVD 0.54 

positive predictive value  PPR 0.64  positive predictive value  PPR 0.53 

Mahalanobis Distance MHD 0.47  Fallout FPR 0.48 

Probabilistic Distance PBD 0.41  True positive rate 
(Sensitivity) 

TPR 0.48 

Average distance AVD 0.39  Volumetric Similarity VS 0.47 

Hausdorff distance HD 0.38  Probabilistic Distance PBD 0.36 

Fallout FPR 0.23  Area under ROC curve AUC 0.34 

True positive rate 
(Sensitivity) 

TPR 0.23  True negative rate 
(Specificity) 

TNR 0.34 

Mutual Information MI 0.19  Mutual Information MI 0.14 

Table 3: Pearson’s correlation between each of the metrics presented in Table 1 and the manual 

rankings MRK1 and MRK2 at system level. Sorted according to decreasing correlation. 

 

After performing the method for each metric and each property, the metrics were then sorted ascending 

according to their sum of bias (Table 4), and given ranks based on the sum of bias, which indicate their 

suitability for evaluating this set of segmentations, where the metric(s) with the least bias are the most 

suitable.  

Now, these ranks of suitability of the metrics are compared with the ranks inferred from their correlation 

with the manual ranking, obtained from the experiment in Section 3.3. In other words, we compare the 

automatic metric selection, based on this method, with the metric selection that would be done based on 

the manual ranking in order to test the efficiency of the selection method. The results in Table 4 show 

moderate correlation between the automatic metric selection and the selection depending on the manual 

ranking. Note that the moderate correlation could be increased by using weights for the properties that 

reflect the goal of each ranker. Such weights have not been used in this experiment. Normally, such 

weights can be defined based on an analysis of the comments of the radiologist that explain their 

judgments. To understand the usefulness of using such weights, consider the fact that the correlation 

between the manual rankings of the two radiologists is moderate (0.62), which implies that we should 

not expect a correlation stronger than moderate without using settings, e.g. weights that reflect the 

individual goals of the segmentation.  
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Metric 

Automatic Manual ranking 1 Manual Ranking 2 
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Volumetric Similarity VS 30,59 2 0.81 1 0.47 10 

Jaccard index JAC 30,59 2 0.81 1 0.62 5 

Cohens KAP KAP 30,29 1 0.81 1 0.64 4 

Dice DICE 30,59 2 0.81 1 0.64 4 

F-Measure FMS 30,59 2 0.81 1 0.64 4 

Interclass correlation ICC 32,43 3 0.81 1 0.64 4 

Adjusted Rand Index ARI 30,29 1 0.80 2 0.65 3 

Area under ROC curve AUC 32,77 4 0.72 3 0.34 12 

True negative rate (Specificity) TNR 54,09 13 0.72 3 0.34 12 

Accuracy ACU 42,40 10 0.71 4 0.56 6 

Rand Index RI 50,34 10 0.71 4 0.56 6 

Global Consistency Error GCE 50,34 11 0.71 4 0.56 6 

Variation of Information VOI 53,19 12 0.71 4 0.56 6 

positive predictive value PPR 58,10 13 0.64 5 0.53 8 

Mahalanobis Distance MHD 36,41 8 0.47 6 0.75 1 

Probabilistic Distance PBD 34,82 7 0.41 7 0.36 11 

Average distance AVD 40,19 9 0.39 8 0.54 7 

Hausdorff distance HD 34,41 6 0.38 9 0.66 2 

True positive rate (Sensitivity) TPR 32,77 4 0.23 10 0.48 9 

Fallout FPR 58,10 13 0.23 10 0.48 9 

Mutual Information MI 61,68 14 0.19 11 0.14 13 

Pearson's correlation with automatic ranking 0.57 0.42 

Table 4: the results of performing the automatic metric selection [2]. The column ‘sum of bias’ 

provides the bias of each metric over all properties used, and is the base for ranking the metrics 

according their suitability, column automatic rank. In the next columns, the correlation and 

resulting metric suitability rank according to the expert rankings, MRK1 and MRK2  

3.5 Discussion of the manual ranking analysis 

The following conclusions can be inferred from the results of the analysis using the manual rankings 

(results presented in Table 2 and Table 3) 

 Table 3shows correlations at system level that are significantly stronger than the correlations of 

rankings at segmentation level (Table 2). Actually, this is intuitive because the errors 

(differences from the manual ranking) in the ranking at segmentation level are higher than in 

rankings at system level. This stems from the fact that ranking single segmentations using 

metrics is sensitive to small differences, in contrast to manual rankings, where small differences 

are ignored. Using significance testing in ranking at system level efficiently solves the problem, 

since the ranking becomes similar to the manual ranking: only systems that have significant 

performance difference are assigned different rankings, otherwise the same rank. The results of 

this experiment shows the necessity of using significance tests for ranking. 

 The four metrics selected for evaluating segmentation in the VISCERAL project, namely the 

Dice coefficient (DICE), the interclass correlation (ICC), the average Hausdorff distance 
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(AVD), and the adjusted Rand index (ARI) are in general (except for the AVG in Ranking 1) 

ranked at the top, which means they have strong correlation with expert ranking. These four 

metrics have been selected from the 21 metrics based on a correlation analysis on brain tumor 

segmentations from the BRATS challenge [8], using the automatic metric selection method 

proposed in [2].  

 One observation is interesting for a further analysis, namely the differences in how the metrics 

are placed in Table 3 for MRK1 and MRK2. For example, the volumetric similarity (VS) is 

placed at the top for MRK1, but at the bottom in MRK2. This is also the case for many other 

metrics. This can be explained by the weak correlation between the two rankers – the correlation 

between the two manual rankings is only 0.62 (Section 3.1.2). However, these differences 

should be related to the criteria considered in the manual ranking by each of the rankers, i.e. the 

subjective rating of the different qualities of the segmentations. A possible further analysis is 

linking this issue to the comments provided by the rankers for each segmentation. 

4 Fuzzy segmentation and fuzzy metrics 

In this section, we analyze the impact of using fuzzy metrics on the ranking results. We analyze this 

issue from several sides trying to answer the following questions: (i) how is the behavior of the different 

metrics as a result of including fuzzy segmentations? (ii) What is the impact of using binary ground truth 

to validate fuzzy segmentation using fuzzy metrics? (iii) How are the results different when using fuzzy 

ground truth? (iv) How are they different when using a threshold at some value? 

4.1 Fuzzy segmentations 

Fuzzy segmentations are common in the medical volume segmentation. As ground truth (GT), such 

segmentations can be as a result of averaging annotations done by different annotators. Another case is 

the fusion of automatic segmentations to produce a silver corpus. In these cases, voxels are not assigned 

to structure as a binary relation, but rather as a probability of membership to the structure.  

Fuzzy segmentation is also common as automatic segmentations produced by the algorithms being 

ranked. Depending on the approach used for segmentation, the membership of the voxels can be defined 

as probabilities resulting in fuzzy segmentations. Also dependent on the segmentation task, there could 

be cases where fuzzy memberships are required to represent boundaries where an exact separation 

between structures is not possible. 

The aim of this analysis is to infer how sensitive metrics are against fuzzification of images, in other 

words, how a particular metric responds to smoothing a particular volume segmentation. This analysis 

is motivated by the following. On the one hand, metrics with high fuzzification sensitivity are required 

to distinguish the accuracy of the systems. This is required if there is fuzzy ground truth available and 

the segmentations being evaluated are fuzzy as well. On the other hand, if only a binary ground truth is 

available, and the segmentations being evaluated are fuzzy or mixed, then the question is about the 

negative impact of using fuzzy ground truth on evaluation results. This holds also for the opposite case. 

In the Anatomy2 Benchmark, only one of the participating algorithms produces fuzzy segmentations. 

This algorithm is denoted as Algorithm A throughout this section. However, only binary ground truth 

segmentations have been used in the evaluation of Anatomy1 and Anatomy2. Here, it has been observed 

that there are differences in the system rankings due to using the threshold option in the evaluation. 

These differences are not negligible. 

The segmentations involved in this analysis are:  

 Binary ground truth (BGT): This is the official binary ground truth, used for validating the 

challenge. 
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 Synthetic fuzzy ground truth (FGT): Since there are only binary ground truth segmentations, 

the fuzzy ground truth was generated synthetically: from each of the ground truth segmentations, 

a fuzzy variant was produced by smoothing the corresponding ground truth using a mean filter. 

 Binary silver ground  truth (BSGT): the silver corpus was generated by fusing all the 

automatic segmentations  

 Fuzzy silver ground truth (BSGT): in another variant, a fuzzy silver corpus is generated by 

fusing all the automatic segmentations. 

 Binary automatic segmentations (BAS): these are the automatic segmentations produced by 

most of the participating algorithms. 

 Fuzzy automatic segmentation (FAS): these are the fuzzy segmentations produced by one of 

the participating algorithms, denoted by Algorithm A throughout the section. 

4.2 Fuzzy metrics 

From the metrics presented in Table 1, metrics that have fuzzy implementation are only those that are 

based on the confusion matrix, namely DICE, JAC, TPR, TNR, FPR, PPR, ACU, FMS, VS, RI, ARI, 

MI, VOI, PBD, KAP, and AUC. More about the fuzzy implementation of the metrics is available in [1]. 

All other metrics, e.g. spatial based distances, do not have fuzzy implementation. As a workaround for 

those metrics, fuzzy images are cut at 0.5 threshold, before they are compared as binary images. In this 

section, only metrics with fuzzy definition are considered. 

4.3 Analysis 

4.3.1 Metric sensitivity against fuzzification 

The aim of this experiment is to infer how invariant metrics are against fuzzification of images, that is, 

how a particular metric responds to smoothing a particular volume segmentation. To this end we 

compared each binary volume in the silver corpus (BSGT) with its corresponding volume from the fuzzy 

silver corpus (FSGT) using each of the 16 metrics for which fuzzy implementations exist. This results 

in 16 similarities/distances per comparison (segmentation pair), which are then averaged over all pairs 

to get 16 average scores, presented in Figure 4. The assumption is that metrics that measure less average 

discrepancy between the binary volumes and their fuzzy variants are more invariant against 

fuzzification. 

Results in Figure 4 show that metrics are differently invariant against fuzzification, that is, they have 

different capabilities in discovering changes due to fuzzification. Metrics that include the true negatives 

(TN) in their definitions (e.g. ARI, ACU, TNR) are in general less sensitive to fuzzification, in contrast 

to other metrics not considering the TN, like DICE, KAP, and JAC. Also one can observe that the 

discrepancy metrics FPR, PBD, and VOI are also invariant against fuzzification because they provide 

very small distances (<< 0.01 voxel) between binary images and their corresponding smoothed images. 

4.3.2 Ranking systems using binary/fuzzy ground truth 

The aim of this experiment is to infer how system rankings, using metrics, change when using fuzzy 

instead of binary ground truth in two cases: (i) when the segmentations being evaluated are binary, (ii) 

when they are fuzzy. The following types of segmentations have been used in this experiment: The 

binary ground truth, officially used for validating the Anatomy2 Benchmark, denoted by (BGT). The 

synthetic fuzzy ground truth generated from each of the binary ground truth by smoothing each volume 

using a mean filter (FGT). The binary automatic segmentations, i.e. the output from most of the 

participating algorithms (BAS). The fuzzy automatic segmentation, the segmentations produced by one 

single participating algorithm, denoted by Algorithm A (FAS). 



D4.5 Result meta-analysis                       

Page 19 of 23 

 

Figure 4: the average similarity between binary volumes and their corresponding fuzzy variant. 
 

In Figure 5, Figure 6, and Figure 7 are the results of the same analysis performed for three selected 

metrics, namely Dice coefficient (DICE), Interclass Correlation (ICC), and Adjusted Rand Index (ARI) 

respectively. The three metrics are selected to represent three different metric categories according to 

Table 1. Note that no metrics are selected for the spatial distance based metrics, because there is still no 

fuzzy implementation for such metrics in the evaluation software. 

There are seven systems to be ranked (Systems A to L in the figures below) depending on the quality of 

the segmentations produced for each of seven organs (left kidney, right kidney, liver, left lung, right 

lung, left psoas major muscle, and right psoas major muscle), which means the systems are ranked for 

each organ separately. The participating algorithms B to L produce only binary volumes whereas 

Algorithm A produces only fuzzy segmentations. 

The ranking is performed in three different cases: (i) The ground truth is binary (BGT) and the 

segmentations are as is (fuzzy for algorithm A and binary otherwise). This case is denoted by “binary 

GT” in the results. (ii) The ground truth is fuzzy (FGT) and the segmentations are as is. This case is 

denoted by “fuzzy GT” in the results. (iii) Fuzzy segmentations of Algorithm A are cut at 0.5 threshold 

to get binary representations. The other segmentations and the ground truth are as is, thus all images, 

involved in this case are binary, are binary. This case is denoted by “threshold at 0.5” in the results. 

To indicate how average scores are deviated between the algorithms, as well as between the three cases, 

we added standard deviation columns and a standard deviation row, as shown in Figure 5, Figure 6, and 

Figure 7.  

The first observation is regarding Algorithm A, which produces fuzzy segmentations as a single 

algorithm. Here, Algorithm A has the best ranking when the corresponding segmentations are evaluated 

using 0.5 threshold or against a fuzzy ground truth, but it is has a considerable disadvantage when using 

the binary ground truth. Thus it is strongly recommended to use a threshold option when the 

segmentations/ground truth are mixed in terms of binary and fuzzy modes. 

The second observation is that the sensitivity in the resulting rankings is dependent on the deviations 

between the average scores of the systems, the less the deviation, the more the rankings change between 

the three cases. That is, if the algorithms are similar in their performance, then using a binary instead of 

a fuzzy ground truth, or the opposite, has a considerable impact on the system ranking. For example the 

average scores of the systems have the most deviation with kidney and liver, so the rankings of the 

systems is exactly the same in the three cases. On the contrary, system average scores have low 

deviations with lungs and psoas major muscles, therefore the rankings of the systems considerably 

change between the three cases. We recommend therefore to take the score deviations into account when 

there are mixed segmentations/ground truth in terms of fuzzy and binary.    
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Figure 5: (A) Validating segmentations using the DICE in three different combinations of 

binary/fuzzy segmentations. The standard deviations of the scores are to show the quality 

variance between the algorithms, and the score variance between the combinations (B) The 

resulting system ranking. (C) Score details of the right lung as a selected case. (D) The 

resulting system ranking for the right lung.   
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Figure 6: (A) Validating segmentations using the Interclass Correlation (ICC) in three different 

combinations of binary/fuzzy segmentations. The standard deviations of the scores are to show 

the quality variance between the algorithms, and the score variance between the combinations 

(B) The resulting system ranking. (C) Score details of the right lung as a selected case. (D) The 

resulting system ranking for the right lung. 
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Figure 7: Validating segmentations using the Adjusted Rand Index (ARI) in three different 

combinations of binary/fuzzy segmentations. The standard deviations of the scores are to show 

the quality variance between the algorithms, and the score variance between the combinations 

(B) The resulting system ranking. (C) Score details of the right lung as a selected case. (D) The 

resulting system ranking for the right lung. 
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5 Conclusion 

We provide analysis on 21 evaluation metrics for medical volume segmentation that have been 

implemented in the evaluation tool EvaluateSegmentation. We show that the correlation among these 

metrics gives information about the nature, sensitivities, and bias of these metrics. It is important to take 

these properties into account in selecting evaluation metrics. In an analysis using manual rankings 

provided by two radiologists, compared to the rankings produced by the 21 evaluation metrics, we show 

that the correlation between metric rankings and manual rankings is significantly stronger when using 

significance tests, since small performance differences are mostly ignored by manual rankers. The 

automatic metric selection method [2] is performed on the same segmentations that have been ranked 

manually, to test the efficiency of the method. The results show a moderate correlation of the manual 

ranking. We show in an analysis on synthetic fuzzy segmentations, generated using smoothing 

functions, that using binary ground truth to evaluate fuzzy segmentations or the opposite (fuzzy ground 

truth to evaluate binary segmentation) has a considerable impact on the system ranking, given the 

systems are similar in their performance. Therefore it is strongly recommended to always use a threshold 

option, if the segmentations/ground truth are mixed in terms of fuzzy and binary modes. Furthermore, 

we show that different metrics are differently invariant against fuzzification, i.e. differently sensitive to 

the combinations of fuzzy/binary volumes.  
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